
Chaos, Solitons and Fractals 112 (2018) 141–148 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

State estimation of chaotic Lurie system with logarithmic quantization 

Juanhui Zheng 

a , b , ∗, Baotong Cui a , b 

a Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi 214122, China 
b School of IoT Engineering, Jiangnan University, Wuxi 214122, China 

a r t i c l e i n f o 

Article history: 

Received 3 August 2017 

Revised 9 April 2018 

Accepted 26 April 2018 

Keywords: 

Lurie system 

State estimation 

Logarithmic quantization 

Input-to-state stability 

a b s t r a c t 

In this paper, we address the problem of state estimation of the Lurie system via the communication 

channel in the case of only this system outputs available. A coder-decoder scheme combines with a loga- 

rithmic quantization to form a novel and reliable communication channel. The errors between Lurie sys- 

tem outputs and observer outputs are regarded as the feedback signals, which are transmitted into the 

observer though the communication channel. A sufficient condition for input-to-state stability is given for 

the boundedness of the error of state estimation. The results of two examples show the effectiveness and 

superiority of the proposed communication channel of the logarithmic quantization. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Lurie system is a classical uncertain nonlinear system which is 

a constant focus of research, such as absolute stability [1,2] , chaotic 

synchronization [3,4] and secure communication [5–7] . Recently, 

the robust performance analysis for chaotic Lurie nonlinear control 

systems have been investigated [8,9] . At the same time, a variety 

of the synchronization problem of chaotic Lurie complex dynami- 

cal networks and passifiable Lurie systems have attracted general 

attention [10–12] , such as sampled-data synchronization problems 

[7,13–15] , impulsive synchronization problems [16,17] and master- 

slave synchronization problems [18,19] . Through the description 

above, as is known to us, most researches of chaotic Lurie system 

are based on the assumption that states of Lurie system are known. 

However, in practice, states of Lurie system are not measurable so 

that the problem of state estimation is important for the Lurie sys- 

tem. 

Since state estimation is an important problem in the internal 

dynamic law of systems, what is more, it is also significant pre- 

requisite for the control of systems. More recently, the problems 

of state estimation have attracted increasing attention. The ma- 

jority of state estimation problems are studied for linear systems 

[20–22] and neural networks [23,24] . The primarily approaches 

of state estimation are the least square estimate and the Kalman 

filtering for linear systems. However, methods of state estimation 

for nonlinear systems are not enough. Then, State estimation of 
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nonlinear Lurie system is firstly put forward by constructing a 

state observer with the limited communication channel in [26] . 

Motivated by this research [26] , we can establish the novel and 

available communication channel to estimate accurately. 

As we all know, the combination of communication and con- 

trol theory is a hot research area. The state observer is controlled 

by the feedback signals which are transmitted though the code- 

decoded quantization scheme so that the feedback signals can be 

transmitted remotely at the limited communication channel. In or- 

der to simplify the feedback process, we usually assume there is 

not any channel distortions and disturbances in communication 

channel [12,25–28] . 

With respect to quantization method, it has attracted a growing 

interest for many researchers. The quantized feedback stabilization 

for the continuous- and discrete-time linear systems and nonlin- 

ear systems have been analyzed with saturating quantized mea- 

surements [29] . Regarding to quantization feedback control and 

quantization state estimation about communication networks, Fu 

[30] has explained the advantages and disadvantages about the 

linear quantization, logarithmic quantization, nonlinear quantiza- 

tion and dynamic quantization in the area of quantization feed- 

back control and estimation. The logarithmic quantization which 

can be divided into the infinite logarithmic quantization and trun- 

cated logarithmic quantization has attracted more attention on 

networked control system [31–35] . In recent years, the uniform 

static quantizer, time-varying coder with a memory and adap- 

tive coder have been involved in the limited-band communication 

channel for synchronization and state estimation of nonlinear sys- 

tems [12,26–28,36,37] . 
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This paper is inspired by the researches of [26] and [30] . The 

principal difference com paring with [26] is that the logarithmic 

quantizer is applied to quantize feedback signals during the pro- 

cessing of coding and decoding and firstly form a feasible novel 

communication channel with the logarithmic quantizer. The rest 

of the paper is organised as follows. In Section 2 , the Lurie system 

and the state estimation strategy are described via limited commu- 

nication channels. In Section 3 , a logarithmic quantization method 

is employed to deal with the transmission of the feedback out- 

put error signal. In Section 4 , the state estimation errors dynamic 

function is studied based on the input-to-state stability method 

for the proposed systems. In Section 5 , the availability and supe- 

riority of the communication channel with proposed quantization 

code-decode procedure are substantiated in the Chua!‘®s circuit 

and chaotic Chua system. In Section 6 , summaries of the full paper 

and future research are proposed. 

2. State estimation scheme 

Consider the Luire system model, which consists of the linear 

and nonlinear part, described as follows: 

˙ x (t) = Ax (t) + Bϕ(y (t)) , t ≥ 0 , (1) 

y (t) = Cx (t) , (2) 

where x (t) = ( x 1 , x 2 , . . . , x n ) 
T ∈ R 

n is the indirect measurable state 

vector of system; y (t) ∈ R is the measurable output scalar of sys- 

tem; ϕ( y ) is the continuous nonlinear scalar function; A ∈ R 

n ×n , 

B ∈ R 

n ×1 , and C ∈ R 

1 ×n are constant matrices. 

In order to estimate the unmeasurable states x ( t ) of the Lurie 

system, a state observer of full order has been constructed as fol- 

lows: 

˙ ˆ x (t) = A ̂

 x (t) + Bϕ( ̂  y (t)) + L ̄ε (t) , t ≥ 0 , (3) 

ˆ y (t) = C ̂  x (t) , (4) 

where ˆ x (t) = ( ̂  x 1 , ̂  x 2 , . . . , ̂  x n ) 
T ∈ R 

n is the observer state vector of 

estimation; ˆ y (t) ∈ R is the observer output scalar; L ∈ R 

n ×1 with a 

scalar gain κ is designed by: 

L = κB, (5) 

where B ∈ R 

n ×1 is a matrice. 

Then ε( t ) denotes the output error of the system and observer: 

ε(t) = y (t) − ˆ y (t) = Ce (t) , t ≥ 0 , (6) 

where e (t) = x (t) − ˆ x (t) is the state estimation error. 

The output error signals ε( t ) of the above-mentioned plant and 

observer are transmitted directly into the observer. However, we 

propose the state observer whose input feedback signals have been 

transmitted via the encoder and decoder, which make decisions 

based on the same information under a communication channel, 

such as [12,26] . We suppose that the communication channel is 

ideal without the transmission delay and the channel interference. 

The transmission process of output error signals ε( t ) is plotted 

in Fig. 1 and depicted specifically as follows. 

Firstly, ε( t ) should become discrete values at the consistent 

sampling time instant for coding. 

ε[ k ] = ε(t k ) , t k = kT , k = 0 , 1 , 2 , . . . , (7) 

where T is the sampling period. 

After sampling, the discrete feedback signal are coded by em- 

ploying a coding quantizer Q ( · ). In this work, different from [26] , 

we take the classical logarithmic quantizer which has been rarely 

considered in the communication channel into account and the 

novel communication channel with the logarithmic quantizer is 

proposed. The method of logarithmic quantization has been given 

in details in the next section, 

ε̄ [ k ] = ε̄ (t k ) = Q(ε(t k )) , t k = kT , k = 0 , 1 , 2 , . . . . (8) 

For the decoding, the discrete quantization signal should be re- 

verted to the continuous feedback signal, which serves as the new 

input of the state observer. Zero − order ext rapolat ion is utilized to 

make the discrete signal become the continuous signal [26] , 

ε̄ (t) = ε̄ [ k ] , t ∈ [ t k , t k +1 ) , (9) 

where the ε̄ (t) is the ultimately feedback input signal. 

The state observer (3) can be written as the form: 

˙ ˆ x (t) = A ̂

 x (t) + Bϕ( ̂  y (t)) + L ̄ε (t) , t ≥ 0 . (10) 

The total transmission error δε( t ) of communication channel is 

defined: 

δε (t) = ε(t) − ε̄ (t) , t ≥ 0 . (11) 

3. Logarithmic quantization 

We consider the logarithmic quantizer as a discrete map Q : 

R → R . A logarithmic quantizer is described as follows: 

ν = { μi = ρ i μ0 : i = 0 , ±1 , ±2 , . . . } ∪ { 0 } , μ0 > 0 , (12) 

where ρ ∈ (0, 1). 

Q(y ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

ρ i μ0 , i f 1 
1+ σ ρ i μ0 < y ≤ 1 

1 − σ
ρ i μ0 , 

0 , i f y = 0 , 

−Q (−y ) , i f y < 0 , 

(13) 

with the quantization density 

σ = 

1 − ρ

1 + ρ
. (14) 

A infinite-level logarithmic quantization process is depicted in 

Fig. 2 [30] . 

The proposed logarithmic quantizer has been compared with 

the time-based zooming memoryless binary quantizer [26] in the 

communication channel coder-decoder scheme. The binary quan- 

tizer is variable with the variation of time so that the quantiza- 

tion value is continuously decrease regardless of the magnitude of 

feedback signal, which leads to magnified quantization errors. The 

proposed logarithmic quantizer can overcome the disadvantage of 

the binary quantizer, since the quantization value increase or de- 

crease with the variation of feedback signals so that quantization 

errors can be reduced. At the same time, in this paper, the feed- 

back signal is not the output signal but the output error signal of 

system and observer which should be smaller than the output sig- 

nal. Consequently, the small output error brings about the small 

quantization error and the relatively big output error generates the 

acceptable quantization error under the logarithmic quantizer. 

According to the quantization (13) , the coding quantized error 

signal (8) yields: 

ε̄ [ k ] = ε̄ (t k ) = Q(ε(t k )) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

ρ i μ0 , i f 
1 

1 + σ
ρ i μ0 < ε(t k ) 

≤ 1 

1 − σ
ρ i μ0 , 

0 , i f ε(t k ) = 0 , 

−Q(−ε(t k )) , i f ε(t k ) < 0 , 

(15) 

where ρ ∈ (0, 1), i = 0 , ±1 , ±2 , . . . , μ0 > 0. 

Remark 1. In this paper, the feedback signals ε( t ), which are 

the output error signals of system and observer, are transmitted 
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