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a b s t r a c t 

Many problems on computer science, chemistry, physics and network theory are related to factors, fac- 

torizations and orthogonal factorizations in graphs. For example, the telephone network design problems 

can be converted into maximum matchings of graphs; perfect matchings or 1-factors in graphs corre- 

spond to Kekulé structures in chemistry; the file transfer problems in computer networks can be mod- 

elled as (0, f )-factorizations in graphs; the designs of Latin squares and Room squares are related to 

orthogonal factorizations in graphs; the orthogonal ( g, f )-colorings of graphs are related to orthogonal ( g, 

f )-factorizations of graphs. In this paper, the orthogonal factorizations in graphs are discussed and we 

show that every bipartite (0 , m f − (m − 1) r) -graph G has a (0, f )-factorization randomly r -orthogonal to 

n vertex disjoint mr -subgraphs of G in certain conditions. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Many real-world networks can conveniently be modelled by 

graphs or networks. Examples include a railroad network with 

nodes presenting railroad stations and links corresponding to rail- 

ways between two stations, or a communication network with 

nodes presenting cities, and links presenting communication chan- 

nels. In particular, a wide variety of systems can be described using 

complex networks. Such systems include: the World Wide Web, 

which is a virtual network of Web pages connected by hyperlinks; 

the cell, where we model the chemicals by nodes and their inter- 

actions by edges; and the food chain webs, the networks by which 

human diseases spread, human collaboration networks etc [1] . Fac- 

tors and orthogonal factorizations in networks or graphs have at- 

tracted a great deal of attention [2–10] due to their applications 

in network design, circuit layout, combinatorial design, and so on. 

For example, a Room square of order 2 n is related to the orthogo- 

nal 1-factorization of a complete graph K 2 n , which was first posed 

by Horton [12] . Euler [11] first found that a pair of orthogonal Latin 
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squares of order n is equivalent to two orthogonal 1-factorizations 

of a complete bipartite graph K n, n . Many other applications in this 

field can be found in a current survey [13] . It is well known that 

a network can be represented by a graph. Nodes of the network 

correspond to vertices of the graph, and links between the nodes 

in the network correspond to edges of the graph. Henceforth we 

use the term graph instead of network. 

The graphs considered in this paper will be finite undi- 

rected graphs which neither loops nor multiple edges. Let G = 

(V (G ) , E(G )) be a graph, where V ( G ) and E ( G ) denote the vertex 

set and edge set of G respectively. For arbitrary x ∈ V ( G ), the de- 

gree of x in G is defined as the number of edges which are adja- 

cent to x and denoted by d G ( x ). Let g, f : V ( G ) → Z be two functions 

such that f ( x ) ≥ g ( x ) ≥ 0 for each x ∈ V ( G ). A spanning subgraph F 

of G with g ( x ) ≤ d F ( x ) ≤ f ( x ) for arbitrary x ∈ V ( G ) is defined as a ( g, 

f )-factor of G . Especially, G is defined as a ( g, f )-graph if G itself 

is a ( g, f )-factor. A ( g, f )-factorization F = {F ∞ 

, F ∈ , . . . , F � 

} of G is 

a partition of E ( G ) into edge-disjoint ( g, f )-factors F 1 , F 2 , . . . , F m 

. A 

subgraph H of a graph G is said to be an m -subgraph if H admits 

m edges in total. For a ( g, f )-factorization F = {F ∞ 

, F ∈ , . . . , F � 

} of 

G and an mr -subgraph H of G , F is said to be r -orthogonal to H 

if | E(H) ∩ E(F i ) | = r, 1 ≤ i ≤ m . If for any partition { A 1 , A 2 , . . . , A m 

} 
of E ( H ) with | A i | = r, G admits a ( g, f )-factorization with A i ⊆E ( F i ), 

1 ≤ i ≤ m , then we say that G admits ( g, f )-factorizations ran- 

domly r -orthogonal to H . It is trivial that randomly 1-orthogonal is 
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equivalent to 1-orthogonal and 1-orthogonal is also said to be or- 

thogonal. A graph denoted by G = (X, Y, E(G )) is called a bipartite 

graph with bipartition { X, Y } and edge set E ( G ). 

Alspach et al. [13] presented the following question: For a given 

subgraph H of G , does there exist a factorization F of G with some 

fixed type orthogonal to H ? 

Li and Liu [4] showed that every (mg + m − 1 , m f − m + 1) - 

graph G admits a ( g, f )-factorization orthogonal to arbitrary given 

m -subgraph. Li et al. [5] justified that for every (mg + k, m f − k ) - 

graph G and its any given k -subgraph H , there exists a subgraph 

R such that R has a ( g, f )-factorization orthogonal to H . Liu and 

Long [14] verified that every (mg + m − 1 , m f − m + 1) -graph G 

has a ( g, f )-factorization randomly r -orthogonal to arbitrary given 

mr -subgraph H . Liu and Dong [15] proved that every bipartite 

(mg + m − 1 , m f − m + 1) -graph G admits a ( g, f )-factorization or- 

thogonal to k vertex disjoint m -subgraph. Liu and Zhu [16] justi- 

fied that every bipartite (mg + m − 1 , m f − m + 1) -graph admits ( g, 

f )-factorizations randomly r -orthogonal to any given mr -subgraph. 

Zhou [17] studied the orthogonal (0, f )-factorizations in bipartite 

(0 , m f − (m − 1) r) -graphs. 

Theorem 1. (Zhou [17] ). Let G be a bipartite (0 , m f − (m − 1) r) - 

graph, and let f be an integer-valued function defined on V ( G ) with 

f ( x ) ≥ 2 r for every x ∈ V ( G ), and let H be an mr-subgraph of G. Then G 

admits a (0, f ) -factorization randomly r-orthogonal to H. 

In this paper, the result in [17] is extended, and it is veri- 

fied that every bipartite (0 , m f − (m − 1) r) -graph G admits a (0, 

f )-factorization randomly r -orthogonal to n vertex disjoint mr - 

subgraphs. Our main result will be shown in Section 3 . 

2. Preliminary lemmas 

Let G be a graph, and let S and T be two disjoint vertex subsets 

of G . We use E G ( S, T ) to denote the set of edges with one end in 

S and the other in T , and write e G (S, T ) = | E G (S, T ) | . For S ⊂ V ( G ) , 

G − S is the subgraph obtained from G by deleting the vertices in 

S together with the edges to which the vertices in S are incident, 

and G [ S ] is the subgraph of G induced by S . For E ′ ⊂ E ( G ), G − E ′ 
is the subgraph obtained from G by deleting the edges in E ′ , and 

G [ E ′ ] is the subgraph of G induced by E ′ . For any X ⊆V ( G ), we de- 

fine f (X ) = 

∑ 

x ∈ X f (x ) for arbitrary function f defined on V ( G ), and 

write f (∅ ) = 0 . 

The following necessary and sufficient condition for a bipartite 

graph to have a ( g, f )-factor was obtained by Folkman and Fulker- 

son (see Theorem 6.8 in [18] ). 

Lemma 1. Let G = (X, Y, E(G )) be a bipartite graph, and g and f 

be two nonnegative integer-valued functions defined on V ( G ) with 

g ( x ) ≤ f ( x ) for every x ∈ V ( G ) . Then G contains a ( g, f ) -factor if and only 

if 

γ1 G (S, T ; g, f ) = f (S) − g(T ) + d G −S (T ) ≥ 0 

and 

γ2 G (S, T ; g, f ) = f (T ) − g(S) + d G −T (S) ≥ 0 

for all S ⊆X and T ⊆Y. 

It is obvious that d G −T (S) = e G (S, Y \ T ) and d G −S (T ) = e G (T , X \ 
S) . Let S ⊆X and T ⊆Y , and let E 1 and E 2 be two disjoint subsets of 

E ( G ). Define 

E iS = E i ∩ E G (S, Y \ T ) , E iT = E i ∩ E G (T , X \ S) 
for i = 1 , 2 , and write 

αS = | E 1 S | , αT = | E 1 T | , βS = | E 2 S | , βT = | E 2 T | . 
It is trivial that αS ≤ d G −T (S) , αT ≤ d G −S (T ) , βS ≤ d G −T (S) , βT ≤
d G −S (T ) . 

Liu and Zhu [16] obtained a necessary and sufficient condition 

for a bipartite graph to have a ( g, f )-factor including E 1 and exclud- 

ing E 2 , which plays a crucial role for proving Theorem 2 . 

Lemma 2. (Liu and Zhu [16] ). Let G = (X, Y, E(G )) be a bipartite 

graph, and let g and f be two integer-valued functions defined on V ( G ) 

satisfying 0 ≤ g ( x ) ≤ f ( x ) for any x ∈ V ( G ), and let E 1 and E 2 be two dis- 

joint subsets of E ( G ) . Then G admits a ( g, f ) -factor F with E 1 ⊆E ( F ) and 

E 2 ∩ E(F ) = ∅ if and only if 

γ1 G (S, T ; g, f ) ≥ αS + βT 

and 

γ2 G (S, T ; g, f ) ≥ αT + βS 

for all S ⊆X and T ⊆Y. 

In the following, we always assume that G is a bipartite 

(0 , m f − (m − 1) r) -graph, where m, r are two positive integers. 

Write 

g(x ) = max { 0 , d G (x ) − (m − 1) f (x ) + (m − 2) r} 
for any x ∈ V ( G ). In terms of the definition of g ( x ), it is trivial that 

0 ≤ g ( x ) ≤ f ( x ) for all x ∈ V ( G ). For any x ∈ V ( G ), we write 

�1 (x ) = 

1 

m 

d G (x ) − g(x ) 

and 

�2 (x ) = f (x ) − 1 

m 

d G (x ) . 

Lemma 3. (Zhou [17] ). For any S ⊆X and T ⊆Y, the following equalities 

hold: 

γ1 G (S, T ; g, f ) = �1 (T ) + �2 (S) + 

m − 1 

m 

d G −S (T ) + 

1 

m 

d G −T (S) 

and 

γ2 G (S, T ; g, f ) = �1 (S) + �2 (T ) + 

m − 1 

m 

d G −T (S) + 

1 

m 

d G −S (T ) . 

3. Main result and its proof 

The study of 1-factorizations is motivated by other combinato- 

rial applications such as scheduling tournaments. Here, the sched- 

ule of games played at the same time can be seen to form a 1- 

factor of the underlying complete graph. If a round robin tour- 

nament for 2 n teams is to be played in the minimum number 

of sessions, we require a 1-factorization of K 2 n , together with an 

ordering of the factors (this ordering is sometimes irrelevant). 

If there are 2 n − 1 teams, the relevant structure is a near-one- 

factorization of K 2 n −l . In each case the (ordered) factorization is 

called the schedule of the tournament [19–22] . Other applications 

of 1-factorizations include block designs, 3-designs and Steiner sys- 

tems [19,23–25] . The file transfer problems in computer networks 

can be modelled as (0, f )-factorizations of a graph [26] . 

Orthogonal factorizations have a wide range of applications in 

Room squares, Latin squares, colorings, and so on. Define a Room 

k -design of order n to be a k -dimensional array of cells, each either 

being empty or containing a pair chosen from a given set of n ele- 

ments, such that, if one takes a two-dimensional projection of the 

array (that is if one chooses any two coordinates and fills a square 

array by placing into cell ( i, j ) the union of all cells with ( i, j ) in the 

two chosen coordinates), the result is always a Room square [12] . 

The following result was verified by Horton [12] . 

Theorem 2. (Horton [12] ). A Room k-design of order n is equivalent 

to k pairwise orthogonal 1-factorizations of a complete graph K n . 

A Latin square of side n is an n × n array with entries from 

{ 1 , 2 , . . . , n } , in which every row and every column contains each 
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