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a b s t r a c t 

The relay coupling of three fractional-order two-stage oscillators in the presence of time delay has been 

explored theoretically, numerically and analogically. The global stabilization of the system in a finite time 

is proven through Hölder and Gronwall inequalities, as well as through inequality scaling skills. The Syn- 

chronization of the system is characterized in terms of its parameters (coupling strength and time delay) 

by using time series, two parameters phase diagrams and two parameters transverse Lyapunov exponent 

diagrams. It is found that for smaller delay values, the network exhibits global phase synchronization 

whereas for higher delay values, phase synchronization just occurs between the two indirectly connected 

units (cluster phase synchronization). Striking phenomena such as amplitudes’ death and chaotic beats 

oscillations are also observed from this relay coupling of three fractional-order two-stage oscillators. Fur- 

thermore, PSpice simulation results of the analog electronic circuit are in perfect accordance with both 

theoretical and numerical results. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Relay coupling has been paid much attention in the field of 

nonlinear dynamics [1–6] . Since its discovery, a primary interest in 

such studies has been focused on synchronization in its many dif- 

ferent forms, from both theoretical and experimental point of view 

[4] . Applications on relay systems are increasingly found in vari- 

ous sectors. For instance, in real communication systems, one or 

many relay stations are set between emitter and receiver systems 

[6] . Similarly during a military parade, the brain serves as a re- 

lay between the members of a soldiers’ group thus promoting the 

synchronization of their gestures. Work on relay coupled systems 

is becoming more and more important in the literature and the 

search for different types of synchronization in these relay coupled 

systems is well highlighted [1–5] . Many types of synchronization 

such as in phase, out-of-phase, complete and cluster synchroniza- 

tion as well as amplitudes death phenomenon have been reported 
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in the last two decades in coupled systems considering time delays 

and conjugated variables [1–18] . Coupled map networks were used 

in Ref. [17] to assess the impact of heterogeneous delays on clus- 

ter synchronization. The authors found that heterogeneity in delays 

induces a rich cluster pattern as compared to homogeneous de- 

lays, while the parity of heterogeneous delay plays a crucial role in 

determining the mechanism of clusters’ formation (driven or self- 

organized). Furthermore, in investigating the impact of a homoge- 

neous delay on the phenomenon of phase synchronized clusters in 

coupled map networks [18] , outcomes reveal that delay may lead 

to a completely different relation between dynamical and struc- 

tural clusters, than that observed in the un-delayed case. In Ref. 

[7] , based on the Lyapunov spectral as a function of time delay, 

the authors show the existence of the phase-flip bifurcation in syn- 

chronization of two excitable systems and two ecological systems 

when the state variables in the coupling are delayed.Thus, the co- 

existence of in-phase and out-of-phase are observed by both nu- 

merical and analogue simulations. The authors of Ref. [8] shown 

the existence of amplitudes death on the dynamic of two Chua 

circuits mutually coupled via conjugated variables. Their numer- 
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ical and experimental results are in good agreement. These re- 

sults have been reported in the relay coupled systems via dissim- 

ilar (conjugate) variables in the absence of time delay [4] . In Ref. 

[1] , using two topologies of coupling: the full coupling and partial 

(relay) coupling, the authors investigated chaotic phase synchro- 

nization in three coupled chaotic oscillators. Their basin of attrac- 

tion showed the coexistence between the complete (global) chaotic 

phase synchronization and partial (cluster) chaotic phase synchro- 

nization when the coupling strength and frequency are set as con- 

trol parameters. They also showed that for the smaller values of 

coupling strength, the chaotic phase synchronization switching is 

induced by breakdown of complete chaotic phase synchronization. 

The issue of synchronization between two delay-coupled oscilla- 

tors via a third element connected as a relay between the two 

delayed oscillators was addressed in Ref. [2] . The authors showed 

that synchronized dynamical states can happen over long distances 

through a relay regardless of the value of delay. In [3] , the exis- 

tence of generalized synchronization in relay coupled systems is 

demonstrated. Based on the Lyapunov spectrum of the full sys- 

tem, the authors identified conditions for the complete and gener- 

alized synchronization. On the other hand, considering the distance 

between phase-space neighbors, the authors used two nonlinear 

measures to amount the generalized synchronization in discretized 

time series. Sharma et al . [4] have shown that in the absence of 

time delay, relay coupling through conjugates variables has the 

same effect, namely: a transition from in-phase to out-of-phase os- 

cillation as well as the transition to amplitude death and subse- 

quently to the stabilization of a fixed point. Results of the research 

works mentioned in all the references cited previously are very in- 

teresting. However, there are aspects that merit more attention and 

which have not been considered. Firstly, the systems descriptions 

are restricted to the integer-order differentials equations, although 

it has already been often reported that many systems, e.g. in chem- 

ical and physical processes could rather be better or more accu- 

rately described by fractional-order differential equations [19–25] . 

Secondly, references on relay coupled systems above have not con- 

sidered time delay in their approach; this limitation is a drawback 

in practical telecommunications. Thirdly, to the best of our knowl- 

edge, even finite-time synchronization has neither received enough 

attention in those relay coupled systems, nor analogical model of 

relay coupled circuits taking time delay into account have been 

reported so far in the above works. Whereas Refs. [25,26] have 

shown that practical applications of fractional-order delayed os- 

cillators are more robust than their integer-order counterparts. 

Furthermore, in chaos-based communication the fractional-order 

derivative and time delay can be used as additional keys to se- 

cure messages. Moreover fractional-order systems offer one addi- 

tional advantage: in many synchronization experiments, it is ob- 

served that the convergence time is shorter than in the case of 

integer-order systems, an advantage during the recovery of mes- 

sages [25,26] . On the importance of fractional-order time delayed 

oscillators in telecommunication, some results with respect to their 

synchronization have been reported this recent years [27–30] . The 

sliding mode synchronization [27] can be cited among others, as 

well as the projective cluster synchronization [28] , the global pro- 

jective synchronization [29] , the finite-time Mittag–Leffler synchro- 

nization [30] , all for the fractional-order coupled oscillators with 

time delay. In the light of these breaches, we have four objectives 

in this work : (i) to consider the relay coupling of three fractional- 

order delayed oscillators; (ii) to determine a sufficient condition 

ensuring the practical global finite-time synchronization in relay 

coupled fractional-order delayed oscillators; (iii) to determine the 

parameters regions (coupling strength and time delay) for which 

the relay coupling of three fractional-order delayed oscillators ex- 

hibit the global synchronization, phase synchronization and cluster 

synchronization; (iv) to carry out an analogical study of the relay 

Fig. 1. Relay topology scheme in the present model. 

coupled fractional-order systems in PSpice software to validate the 

theoretical and numerical analysis. 

The rest of the paper is as follows: In Section 2 , the model 

description of relay systems and some preliminaries on the 

fractional-order derivatives theories are given. The main part of the 

finite-time stabilization in a relay coupling of three fractional-order 

systems in the presence of time delay is carried out in Section 3 . 

Numerical simulations are given in Section 4 . Section 5 deals with 

PSpice simulations to illustrate the effectiveness of the relay cou- 

pling of three fractional-order two-stage oscillators. Conclusion and 

remarks in Section 6 complete the paper. 

2. Model description and preliminaries 

2.1. Model description 

Consider three fractional-order oscillators coupled as shown in 

Fig 1 . Arrows between oscillators indicate bidirectional non adap- 

tive coupling. In this topology, time delay between two oscilla- 

tors directly coupled is taken into account. Each of the oscillators 

of Fig. 1 is a fractional-order two-stage oscillator. Fractional-order 

commensurate two-stage oscillator is well studied in [19,20] . 

Based on the mathematical model of fractional-order two-stage 

oscillator, as defined in [19,20] , we can write the equations model- 

ing the relay topology as follows: the outer 1 oscillator {
D 

q X = AX + BF ( X ) + U 1 (t, τ ) 
X (t) = α(t) t ∈ [ −τ, 0] , 

(1) 

the outer 2 oscillator {
D 

q Z = AZ + BF ( Z ) + U 2 (t, τ ) 
Z(t) = ϕ(t) t ∈ [ −τ, 0] , 

(2) 

and the relay oscillator {
D 

q Y = AY + BF ( Y ) + U 3 (t, τ ) 
Y (t) = ψ(t) t ∈ [ −τ, 0] . 

(3) 

D 

q denotes the caputo derivative of order q. A ∈ R 4 × 4 and B ∈ R 4 × 4 

are the linear matrix and F ∈ R 4 is a nonlinear vector all de- 

fined in [19,20] . The functions U 1 ( t, τ ), U 2 ( t, τ ) and U 3 ( t, τ ) are 

the non adaptive feedback controllers integrating the time de- 

lay τ . The delay τ is the time it takes for the information to 

move from one oscillator to the next, with which it is directly 

coupled and conversely. X = [ x 1 , x 2 , x 3 , x 4 ] 
T , Z = [ z 1 , z 2 , z 3 , z 4 ] 

T and 

Y = [ y 1 , y 2 , y 3 , y 4 ] 
T , denote the outer 1, outer 2 and relay states 

respectively. According to Refs. [19,20] , the matrix A and B 

can be written as follows: A = 

⎡ 

⎢ ⎣ 

0 0 0 σ1 

0 0 0 1 

0 0 0 σ2 

−1 −1 −1 −ε 

⎤ 

⎥ ⎦ 

, and B = 

diag 
(
−γ1 0 −γ2 0 

)
, where σ 1 , σ 2 , γ 1 , γ 2 and ε are the di- 

mensionless parameters of the two-stage oscillators. The nonlinear 

vector F is defined such that for a state vector X 
′ = [ x 

′ 
1 , x 

′ 
2 , x 

′ 
3 , x 

′ 
4 ] 

T , 

F 
(
X 

′ ) = 

[
exp( −x 

′ 
2 

− x 
′ 
3 
) − 1 , 0 , exp( −x 

′ 
2 
) − 1 , 0 

]T 
. 

Using the above consideration, the control signals received by 

outer 1, outer 2 and relay oscillators are defined as follows: outer 

1 

U 1 (t, τ ) = K 1 ( Y ( t − τ ) − X ) , (4) 
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