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a b s t r a c t 

We propose an exchange economy evolutionary model with discrete time, in which there are two groups 

of agents characterized by different structures of preferences. The share updating mechanism depends 

in a monotone manner on the goods’ consumption, described in terms of the calorie intakes. In such 

framework we investigate the existence of equilibria, their stability and the occurrence of multistabil- 

ity phenomena via a qualitative bifurcation analysis, which also highlights the presence of transcritical 

bifurcations. 
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1. Introduction 

In the present paper we are going to show the richness of dy- 

namic behaviors arising from the exchange economy evolutionary 

model introduced in [1] when considering time as discrete rather 

than continuous. Indeed, like in that paper we deal with an ex- 

change economy setting in which agents are heterogeneous in the 

structure of preferences. Namely, the weights assigned to the two 

consumption goods in the Cobb–Douglas utility functions do not 

coincide across groups. Moreover, similarly to [1] , the mechanism 

according to which shares are updated depends on goods’ con- 

sumption, described in terms of the calorie intakes of the two 

groups of agents. However, instead of the linear, monotone depen- 

dence considered therein, we assume a nonlinear, but still mono- 

tone, relationship between the share updating mechanism and the 

(difference of the) calorie intakes. In particular, following [2,3] , we 

do consider an exponential discrete replicator rule to describe the 

evolutionary mechanism. We recall that, according to [1] , a mono- 

tone population growth rate is suitable to represent the long-run 

centuries-old trend, as the diet of a population group affects its 

long-term survival. More precisely, as observed in [4] , biological 

payoff functions monotonically increasing in the calorie intake well 

describe food regimes characterized by a calorie shortage, and are 
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thus appropriate to represent the long-run centuries-old trend be- 

fore the industrial revolution. 

The model we propose belongs to the line of research devel- 

oped in [4–6] and inspired to the setting in [1] . In more detail, in 

[4,5] time is continuous and the focus is on the analysis of the lo- 

cal stability of the equilibria and on some of their static features, 

such as weak and strong coexistence between groups, assum- 

ing that endowments are respectively homogeneous and heteroge- 

neous between groups. In those papers we replaced the monotone 

population growth rate assumed in [1] with a bell-shaped map, 

increasing with the calorie intake up to a certain threshold value, 

above which it becomes decreasing. Bell-shaped maps are indeed 

well-suited to describe the framework of contemporary developed 

countries and the negative effects of overconsumption on health 

and survival (see [5,7] ). In [6] the evolutionary mechanism is based 

on the relative utility values realized by the two kinds of agents, 

rather than on biological payoffs. 

As mentioned above, differently from [1] , in the present paper 

we do consider time as discrete, rather than continuous. However, 

we stress that we do not deal with a numerical discretization of 

the model proposed therein. Indeed, our discretization is built on 

the assumptions we make on the evolutionary mechanism. In par- 

ticular, we describe it via an exponential replicator rule (see [2,3] ). 

The choice of dealing with a discrete-time, rather than continuous- 

time, model comes from the consideration that the former frame- 

work is more suitable to represent the sequence of actions which 

lead to the formation of the population shares. Namely, in view of 
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embracing a new preference structure, agents need time to eval- 

uate the satisfaction degree resulting from their previous choice, 

to gather information on the other lifestyles and to compare the 

various satisfaction levels, in order to make their next choice. 

We find that the passage from continuous to discrete time is 

not innocuous in terms of results. More precisely, like in [1] , in ad- 

dition to the two trivial market stationary equilibria, in which just 

one of the two groups of agents is present, we find at most one 

nontrivial equilibrium, characterized by the coexistence between 

the two groups. We perform a qualitative bifurcation analysis on 

varying mainly the parameter measuring the heterogeneity in the 

structure of preferences between groups and we prove that the 

nontrivial equilibrium may emerge via a transcritical bifurcation. 

Thanks to our nonlinearity, such internal equilibrium can be stable 

or it can lose stability via a flip bifurcation, leading to the presence 

of oscillatory and chaotic orbits, while in [1] it is always stable. We 

stress that when it is locally stable, it may be surrounded by pe- 

riodic or chaotic attractors, due to the presence of multistability 

phenomena. 

The remainder of the paper is organized as follows. In 

Section 2 we present our model and we analyze the existence and 

local stability of the equilibria. In Section 3 we perform a qualita- 

tive bifurcation analysis, showing the possible dynamic behaviors 

for the system. In Section 4 we briefly discuss our results and de- 

scribe possible future study directions. 

2. The model 

We start our discussion recalling the framework in [1] , where 

the authors consider a continuous-time model describing an ex- 

change economy with a continuum of agents, which may be of 

type α or of type β . There are two consumption goods, x and y , 

and agent preferences are described by Cobb-Douglas utility func- 

tions, i.e., U i (x, y ) = x i y 1 −i , for i ∈ { α, β}, with 0 < β < α < 1. The 

quantity of good x ( y ) consumed by an agent of type i ∈ { α, β} 

is denoted by x i ( y i ). Both kinds of agents have the same en- 

dowments of the two goods, denoted respectively by w x and w y . 

The analysis is performed in terms of the relative price p(t) = 

p y (t) /p x (t) , where p x ( t ) and p y ( t ) are the prices at time t for goods 

x and y , respectively. The size of the population of kind α ( β) 

at time t is denoted by A ( t ) ( B ( t )) and the normalized variable 

a (t) = A (t ) / (A (t ) + B (t)) represents the population fraction com- 

posed by the agents of type α. For simplicity, we assume that the 

population size is normalized to 1, so that the fraction composed 

by the agents of type β is given by 1 − a (t) . 

We now present the definition of market equilibrium, we will 

refer to in the remainder of the paper. With this respect, we stress 

that the only difference between the framework we are going to 

consider and the one in [1] is that, in order to take into account 

the complexity of the evolutive process of share formation and the 

time it requires, we assume that in our model time is discrete 

rather than continuous. 

Definition 2.1. Given the economy and the population share a ( t ), a 

market equilibrium at time t is a vector (p ∗(t) , x ∗
i 
(t) , y ∗

i 
(t)) , with 

i ∈ { α, β}, such that: 

-every kind of agent chooses a utility-maximizing consumption 

bundle, given p ∗( t ); 

-the markets for the two goods clear. 

Simple computations show that, solving the consumer maxi- 

mization problems for agents of type α and β and using a market 

clearing condition, the market equilibrium price is given by 

p ∗(t ) = 

[
1 −

(
a (t) α + (1 − a (t)) β

)]
w x (

a (t ) α + (1 − a (t)) β
)
w y 

(2.1) 

and the consumer equilibrium quantities of the two goods for an 

agent of type i ∈ { α, β} are 

x ∗
i 
(t) = i (w x + p ∗(t) w y ) = 

iw x 

a (t) α+(1 −a (t)) β
, 

y ∗
i 
(t) = (1 − i ) 

(
w x 

p ∗(t) 
+ w y 

)
= 

(1 −i ) w y 

1 −(a (t) α+(1 −a (t)) β) 
. 

(2.2) 

See [1,5] for further mathematical details. 

Once we specify a dynamical rule for the population share evo- 

lution, it is also possible to give the definition of market stationary 

equilibrium as follows. 

Definition 2.2. Given the economy, the vector (a ∗, p ∗, x ∗
i 
, y ∗

i 
) , i ∈ 

{ α, β} , is a market stationary equilibrium if a ∗ is constant and if, 

given a ∗, (p ∗, x ∗
i 
, y ∗

i 
) , i ∈ { α, β}, is a market equilibrium for every t . 

We stress that, in the definition above, a ∗ is a stationary value 

in a dynamical, rather than in a general equilibrium, sense. Vice 

versa, for (p ∗, x ∗
i 
, y ∗

i 
) , i ∈ { α, β} , in agreement with Definition 2.1 , 

we say that it is an equilibrium if, given p ∗, every kind of agent 

chooses a utility-maximizing consumption bundle and in the mar- 

kets for the two goods demand equals supply. Moreover, in the 

market stationary equilibria, p ∗, x ∗
i 

and y ∗
i 

have to remain constant 

over time. We remark that, in order to underline the different na- 

ture of a and of ( p, x i , y i ), i ∈ { α, β}, in Definition 2.2 it would be 

more appropriate to denote the first component of a market sta- 

tionary equilibrium using a different symbol from that employed in 

Definition 2.1 to denote market equilibria. However, not to overbur- 

den notation, in agreement with [1] we chose to denote all compo- 

nents of market stationary equilibria by a star. In fact, for the sake 

of brevity, we will identify market stationary equilibria just with 

the population share a , since it determines all other equilibrium 

components. 

The market stationary equilibria, at which for every t the pop- 

ulation shares, and thus also the market equilibrium price and the 

consumer equilibrium quantities, are constant, will be called trivial 

if they are not characterized by the coexistence between the two 

groups of agents, and nontrivial otherwise. 

Let us now recall the dynamical rule for the population share 

evolution considered in [1] and based on a biological payoff. 

The calorie intake K i ( t ) of an agent of type i ∈ { α, β} at time t is 

given by a linear combination of the units x i ( t ) and y i ( t ) of goods 

x and y he consumes, weighted respectively with the calories that 

each agent derives from the consumption of a unit of good x and 

of good y , i.e., K i (t) = c x x i (t) + c y y i (t) . Denoting by K the calorie 

subsistence level, in [1] the growth rate of the population of type 

i is then assumed to be 

K i (t) − K , 

so that the evolution of the two groups of consumers is described 

by the following system {
dA (t) 

dt 
= (K α(t) − K ) A (t) 

dB (t) 
dt 

= (K β (t) − K ) B (t) 

or equivalently, in terms of the normalized variable a ( t ), by 

da (t) 

dt 
= a (t)(1 − a (t))(K α(t) − K β (t)) . (2.3) 

Hence, since for i ∈ { α, β} 

K i (t) = 

i c x w x 

a (t) α + (1 − a (t)) β
+ 

(1 − i ) c y w y 

1 − a (t ) α − (1 − a (t)) β
, (2.4) 

(2.3) can be rewritten as 

da (t) 

dt 
= (α − β) a (t)(1 − a (t)) 

×
(

c x w x 

a (t) α + (1 − a (t)) β
− c y w y 

1 − a (t) α − (1 − a (t)) β

)
. 
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