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a b s t r a c t 

The Duffing equation describes a periodically forced oscillator model with a nonlinear elasticity. In its cir- 

cuitry, a saturable-iron core often exhibits a hysteresis, however, a few studies about the Duffing equation 

has discussed the effects of the hysteresis because of difficulties in their mathematical treatment. In this 

paper, we investigate a forced planer system obtained by replacing a cubic term in the Duffing equation 

with a hysteresis function. For simplicity, we approximate the hysteresis to a piecewise linear function. 

Since the solutions are expressed by combinations of some dynamical systems and switching conditions, 

a finite-state machine is derived from the hybrid system approach, and then bifurcation theory can be 

applied to it. We topologically classify periodic solutions and compute local and grazing bifurcation sets 

accurately. In comparison with the Duffing equation, we discuss the effects caused by the hysteresis, such 

as the devil’s staircase in resonant solutions. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The Duffing equation describes a typical nonlinear non- 

autonomous system that provides a rich variety of nonlinear phe- 

nomena: a horseshoe structure around a saddle fixed point [1] , 

nonlinear resonance with jump phenomena, bifurcations of peri- 

odic solutions, chaotic behavior [2] and so on. It has been already 

well studied from viewpoints varying from mathematical analyses 

[3] to control engineering [4] . 

The circuit corresponding to the Duffing equation is achieved 

by a resistor, a capacitor and a nonlinear inductor with an exter- 

nal driving force [3,5] , see Fig. 1 . Conventionally, the current of the 

inductor is approximated by a third-power polynomial of the mag- 

netic flux. However, a practical saturable-core inductor has a hys- 

teresis between the current and the flux. The Duffing equation con- 

taining the hysteresis was investigated, e.g., Hayashi [6] suggested 

that the hysteresis affects structures of bifurcation sets for periodic 

solutions. 

To analyze a nonlinear system rigorously, piecewise linear 

(PWL) functions are frequently used to approximate these non- 

linear characteristics and, conversely, sometimes utilized to create 

complex behavior [7] . For example, Nishio and Mori [8] showed 
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chaotic phenomena derived from a two-dimensional circuit with 

a PWL hysteresis and Kimura et al. [9] presented an application 

of a PWL system. Kousaka et al. [10] developed a general method 

to solve bifurcation problems of nonlinear systems containing hys- 

teresis. 

Nonsmooth systems appear naturally in many practical systems 

because many physical phenomena present discontinuities: switch- 

ing in an electrical circuit [11] , firing in the neuronal systems 

[12] or having impacts in mechanics [13] . Their discontinuities can 

be approximated by the PWL functions. 

In this study, we discuss the behavior observed in a forced 

planer system obtained by replacing a cubic term in the Duffing 

equation with a hysteresis function. We regard these properties as 

a simple PWL function in order to apply the hybrid system ap- 

proaches. In Section 2 , we introduce the Duffing equation with its 

circuitry. We also provide mathematical preliminaries for the hy- 

brid system with hysteresis in this section. We try to describe the 

hysteresis by defining departure and arrival sets and determine the 

relationship among them. Then the system provides a finite-state 

machine (FSM), which is necessary for constructing the hybrid sys- 

tem. In Section 3 , we briefly denote topological classifications of 

periodic solutions and their bifurcations. In Section 4 , we show 

bifurcation diagrams and response curves of periodic solutions in 

the system by solving the fixed point equation and the characteris- 

tic equation simultaneously. We compare the bifurcation structures 

between the Duffing equation and the proposed hybrid system and 
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Fig. 1. A forced resonant circuit with a saturable-core inductor. 

point out their differences and similarities. We introduce the ratio 

ρ as a measure to represent a characteristic of the solutions of the 

proposed system and observe the devil’s staircase in the ratio ρ , 

which cannot be found in the Duffing equation. Finally, we con- 

clude this study in Section 5 . 

2. Duffing equation containing a piecewise linear hysteresis 

2.1. Duffing equation 

The resonant circuit shown in Fig. 1 leads to the following 

equations: 

C 
dv C 
dt 

+ 

v C 
R 

+ i = j(t) , 

N 

dφ

dt 
= v C , 

Ni = G (φ) = a 1 φ + a 3 φ
3 , 

j(t) = J 0 + J cos ωt, (1) 

where φ is the magnetic flux of the saturable-core inductor, N is 

the number of turns of the coil, and G is the characteristic of the 

inductor that is assumed to be a cubic function. By taking variable 

transformations such as: 

x = φ, τ = ωt, 

k = 

1 

ωRC 
, c 1 = 

a 1 
N 

2 ω 

2 C 
, c 3 = 

a 3 
N 

2 ω 

2 C 
, 

g(x ) = c 1 x + c 3 x 
3 , B 0 = 

J 0 
Nω 

2 C 
, B = 

J 

Nω 

2 C 
, 

we have 

d 2 x 

dτ 2 
+ k 

dx 

dτ
+ g(x ) = B 0 + B cos τ. (2) 

By setting dx / d τ with y and rewriting τ as t , Eq. (2) can be written 

as a system of first-order ordinary differential equations on R 

2 : 

dx 

dt 
= y, 

dy 

dt 
= −ky − g(x ) + B 0 + B cos t. (3) 

We call Eq. (3) the Duffing equation [2] . Several variations of circuit 

implementation and equations for the Duffing equation have been 

revisited by Kovacic and Brennan [3] . 

2.2. Hysteresis of a saturable-core inductor and it’s piecewise linear 

approximation 

A saturable-core inductor includes the hysteresis in the rela- 

tionship between the magnetic flux φ and the current i of the in- 

ductor, as shown in Fig. 2 (a). In accordance with the magnetic 

saturation and the remanence of the iron core, a hysteresis loop 

is formed by varying the flux, i.e., if an increment of the flux ex- 

ceeds a threshold φ1 , a decrement may trace another curve (lower 

curve in the figure). Also after the negative threshold φ−1 in the 

decrement is exceeded, the flux may trace the other curve (up- 

per curve in the figure) in the increment, where the thresholds 

φ1 and φ−1 correspond remanences. The appearance of the gap 

between these curves is the main property of the hysteresis. The 

state of the saturable-core inductor, magnetized or not, determines 

which curve the current follows; and therefore, it actually includes 

a memory in a sense. 

We try to approximate the hysteresis to a PWL hysteresis 

H constructed of two PWL functions shown in Fig. 2 (b) [8] . 

Note x th ( ± 1) is in accordance with φ ± 1 , and the bending point 

x bend ( ± 1) is added. The thickness of the hysteresis loop of the 

PWL hysteresis is governed by θ . 

2.3. Hybrid systems 

We adopt the hybrid system approach [14] to consider a dy- 

namical system containing the PWL hysteresis. Although H is not 

differentiable at x th ( ± 1) and x bend ( ± 1) and has the hysteresis 

loop depending on the state, the approach stated below overcomes 

these difficulties. 

A hybrid system is composed of some smooth dynamical sys- 

tems and a finite-state machine (FSM). The FSM is a mathemati- 

cal model used in computation algorithms and this describes the 

transitions of the finite discrete states (we call modes ). Each mode 

gives one dynamical system, and the FSM switches the modes one 

after another. When we interpret a system as a hybrid system, the 

total number of the smooth dynamical systems, which is equiva- 

lent to the total number of the modes, and the rules of the mode 

transitions are necessary. 

Now we define a hybrid system for the Duffing equation con- 

taining the PWL hysteresis. Let m be the total number of the 

Fig. 2. (a) Schematic illustration of the relationship between magnetic flux and current for the saturable-core inductor, and (b) PWL hysteresis H as an approximated model 

for (a). 
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