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a b s t r a c t 

Spherical conformal contact is widely used in engineering structures. The existing solution of the spher- 

ical conformal contact problem always ignores the microscopic characteristics or friction of the spheri- 

cal surfaces. Therefore, the current paper presents a spherical fractal model to characterize the contact 

state of spherical pairs considering the microscopic topography of rough spherical surface and the factor 

of friction. Firstly, a method of characterizing the microscopic topography of rough spherical surface is 

proposed based on three-dimensional Weierstrass–Mandelbrot function. The fractal contact model of the 

single asperity is developed by Hertz theory in combination with elasticity. Then, the macroscopic pa- 

rameters are introduced to construct the contact surface coefficient. The area distribution function under 

conformal contact region is obtained. Considering the friction factor of the conformal contact region, the 

microcontact model of the spherical conformal contact is developed based on fractal theory. Finally, the 

formula between (elastic, elastic-plastic, plastic) contact area, (elastic, elastic-plastic, plastic) contact load 

and the key parameters (fractal parameters and macro parameters) are derived based on the proposed 

model. The relationship between the actual contact area and the normal load of the contact region is 

established. Numerical results show that the proposed model is more accurate for the analysis of the 

spherical surface contact area and contact load. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

The classical fractal contact theory is always limited to the 

plane or cylindrical contact problems. It cannot be used to solve 

the spherical conformal contact which exists in many engineering 

structures such as air plane’s landing gear, bridge support, sliding 

bearings etc. The main failure mode of the conformal contact be- 

tween the inner and outer surfaces is the sliding wear between the 

two contact surfaces. The actual area and load of the contact pair 

are the important factors that affect the friction and wear. There- 

fore, it is necessary to study the actual area and load of spheri- 

cal conformal contact. But there are two issues among the current 

literature when calculating the actual area and load of spherical 

conformal contact. One is ignoring the microscopic characteristics 

of the spherical surface; the other is that the factor of friction is 

always ignored. However, all natural surfaces and surfaces of engi- 

neering have the surface roughness at different length scales, ex- 

tending from atomic dimensions to the linear size of the object of 

study. Surface roughness is one of the most important factor re- 

searchers should consider in many engineering applications. 
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Many researchers studied the spherical conformal contact prob- 

lems. The problem of frictionless sphere in a conforming cavity has 

been analyzed by Goodman & Keer using numerical methods ap- 

propriate to spherical bodies [1] . Steuermann has found the pres- 

sure distribution by an infinite series of known function for pro- 

files of planar symmetry and axi-symmetry [2] , the findings of 

Steuermann are though better than that of Hertz by inclusion of 

higher terms in the description of the profile, but this model is still 

limited in the assumption of elastic half-space, and its error rises 

rapidly with the increase of contact arc angle or with the decrease 

of clearance between sphere and spherical cavity [3] . Steuermann 

model was then modified by Liu and used to deal with the con- 

tact pressure distribution. This model can only explain the normal 

force-displacement relationship in a small scope of clearance and 

deformation. The error is even greater than Hertz model when ex- 

ceeding this scope [4] . Fang established a friction-free conformal 

contact model by combining with theoretical analysis and numeri- 

cal methods, which can calculate the contact pressure distribution 

of conformal contact between a sphere and a spherical cavity [5] . 

According to the above analysis, the existing studies on the con- 

tact area and load of spherical conformal contact do not consider 

the factor of friction and the microscopic characteristics of the sur- 
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face, such as the morphology of the contact surface and the effect 

of surface roughness on contact ability. 

The elastic-plastic contact of a sphere and a flat is a fundamen- 

tal problem in contact mechanics. Chang et al. developed the first 

elastic-plastic contact model for rough surfaces (Chang–Etsion–

Bogy (CEB) model) [6] . Kogut and Etsion (KE model) developed 

a finite element (FE) model to analyze the elastic-plastic contact 

of a deformable spherical asperity and a rigid flat [7] . L. Li devel- 

oped a model for the contact area and static friction of nominally 

flat rough surfaces and rough spherical surfaces [8] . A model for 

an elastic–plastic contact between a deformable sphere and a rigid 

flat under combined normal and tangential loading with full stick 

contact condition was developed by V. Brizmer [9] . 

For the sake of considering the effect of the microcosmic factor 

on calculating the contact area and load, the fractal theory is intro- 

duced. This theory was proposed by Mandelbort and successfully 

applied to the British coastline [10] . Many researchers studied its 

application in engineering. Iasef Md Rian explored the application 

of fractal geometry to architecture and art [11] . Yao Liu proposed 

a two-stage method for fractal dimension calculation of the me- 

chanical equipment rough surface profile based on fractal theory 

[12] . Mohamad’ study shows that fractal geometry is an effective 

method for the study of the corrosion mechanism of the surface 

[13] . Guoxiong Chen proposed a matched filtering method for sep- 

arating magnetic anomalies [14] . The hydraulic characteristic of the 

rock fracture network was studied based on the fractal theory [15] . 

Jiang Shuyun predicted the thermal contact resistance of two con- 

tact surfaces [16] . 

There are many studies on the contact models based on fractal 

theory, including on plane and cylindrical surfaces. Majumdar and 

Bhushan established the MB fractal contact model [17] . In their 

model, the fractal theory was applied to the two rough surfaces 

contact analysis for the first time. Then many subsequent studies 

proved the validity of the MB model [18-20] . Wang and Komvopou- 

los established the WK fractal contact model by modifying the area 

distribution function and using the elastic-plastic contact analy- 

sis [21] . Yan and Komvopoulos used fractal theory to study the 

contact problem of the three-dimensional (3D) rough surface [22] . 

Morag Etsiont argued that the deformation of the asperity was 

transformed from the elastic deformation to the plastic deforma- 

tion. The elastic-plastic correction model of rough surface based on 

the MB model was proposed, namely the ME model [23] . Qi stud- 

ied the fractal model to calculate the normal contact stiffness for 

spheroidal contact bodies [24] . Kang theoretically investigated the 

contact area and the negative friction velocity slope on dynamic 

instability of spherical joint [25] . 

The above contact models based on fractal theory mainly con- 

centrate on rough "plane" or cylindrical surfaces, while the studies 

on rough "conformal spherical" surfaces are limited; in addition, 

most of them ignore the friction factor. 

Therefore, this paper is to provide a fractal model to character- 

ize the contact of rough conformal spherical surfaces with the fric- 

tion factor considered. The paper is structured as follows: after an 

introduction, we present the spherical fractal theory in Section 2 . 

Then, the microcontact model of the spherical conformal contact 

based on spherical fractal theory is presented in Section 3 . More- 

over, we give the numerical results and discussions in Section 4 . A 

conclusion is drawn in Section 5 . 

2. Spherical fractal theory 

2.1. Fractal characterization of rough spherical surface 

Weierstrass (1872) derived a famous function which is every- 

where continuous but everywhere not differentiable. The real part 

of the function is frequently used to characterize fractal rough pro- 

file, called the Weierstrass–Mandelbrot function (WM function). 

The original WM function is 

y ( x ) = G 

D −1 
∞ ∑ 

n = n l 
γ −( 2 −D ) n cos ( 2 πγ n x ) , 1 < D 〈 2 , γ 〉 1 (1) 

where D is the fractal dimension of profile, G is the fractal rough- 

ness which is a height scale parameter independent of frequency, 

x is the profile’s horizontal coordinate, γ n is the spatial frequency 

of the random profile, n is a frequency index, n l is the number cor- 

responding to the lowest cut off frequency of the profile. 

Let x = ρθ , and the fractal profile is superimposed on the circle 

curve, the original WM function can be transformed into the new 

equation. 

ρ( θ ) = ρ + G 

D −1 
∞ ∑ 

n = n l 
γ −( 2 −D ) n cos ( 2 πγ n ρθ ) , 0 ≤ θ ≤ 2 π (2) 

where ρ is the polar radius and θ is the polar angle 

Fig. 1 (a) shows the fractal profile when L = 20 mm, G = 10 −8 mm 

and D = 1.3 in Eq. (1) , and Fig. 1 (b) shows the fractal profile with 

the condition of L = 20 mm, G = 10 −8 mm and D = 1.6 in Eq. (1) . The 

new two-dimensional WM function, that is Eq. (2) , is employed 

to describe the circular fractal profile with a nominal radius of 

ρ . The simulation of circular fractal profiles is shown in Fig. 1 (c) 

and Fig. 1 (d) after setting the radius ρ= 0.05 mm, G = 10 −8 mm, 

D = 1.3 and D = 1.6 respectively. The function expands the applica- 

tion scope of original WM function. Fig. 1 shows that the profile 

curve in Fig. 1 (a) and (c) are rougher than that in Fig. 1 (b) and (d), 

it indicates that the fluctuation of the profile curve is larger when 

the fractal dimension D is 1.3 than 1.6. The circular fractal profile 

tends to be smoother when the fractal dimension D increased from 

1.3 to 1.6, which is similar to the results of the linear simulation in 

Fig. 1 (a) and (b). It indicates the existence and validity of the cir- 

cular fractal profile. 

Ausloos and Berman generalized the height distribution func- 

tion of asperities on the 3D rough surface to describe the three- 

dimensional stochastic process by introducing more parameters in 

the original WM function, that is the Ausloos–Berman (AB) func- 

tion, W.Yan and K. Komvopoulos derived three-dimensional (3D) 

WM function which can describe the microscopic features of rough 

surface based on AB function as follows [22] 

z ( x, y ) = L 

(
G 

L 

)D s −2 
(

ln γ

M 

) 1 
2 M ∑ 

m =1 

n max ∑ 

n =0 

γ ( D s −3 ) n 

·
{ 

cos φm,n − cos 

[ 

2 πγ n 
√ 

x 2 + y 2 

L 
cos 

×
(

arctan 

(
y 

x 

)
− πm 

M 

)
+ φm,n 

] } 

, (3) 

where D S (2 ≤ D S ≤ 3) is the surface fractal dimension, M represents 

quantity and intensity of peaks which are composed of the sur- 

face, λn is the reciprocal of the random profile’s space frequency, 

γ n = 1/ λn , αm 

= πm / M represents the arbitrary angle, a random 

number generator is used to generate random phase φn in the 

interval [0,2 π ], the parameter k is a wave number which is re- 

lated to the sample size k = 2 π / L , where L is the sample length, 

the anisotropy of the surface geometry is controlled by the magni- 

tude of A m 

. n max = int[ log ( L / L s )/ log γ ], L s is the sampling length. The 

quantity and intensity of peaks increase with the increase of M , 

which makes the surface roughness larger, surfaces possess cylin- 

drical corrugations with the condition of M = 1, λ denotes the pro- 

file density, which is a constant greater than 1, it’s appropriate for 

random surface that obeys the normal distribution with γ = 1.5 

(suitable for high spectral density and random phase), αm 

is used 

to offset the ridges in the azimuthal direction. 
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