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a b s t r a c t 

The present paper deals with an eco-epidemiological prey–predator model with delay. It is assumed that 

infection floats in predator species only. Both the susceptible and infected predator species are subjected 

to harvesting at different harvesting rates. Differential predation rates for susceptible and infected preda- 

tors are considered. It is shown that the time delay can even destabilize the otherwise globally stable 

non-zero equilibrium state. It is observed that coexistence of all the three species is possible through 

periodic solutions due to Hopf bifurcation. With the help of normal form theory and central manifold 

arguments, stability of bifurcating periodic orbits is determined. Numerical simulations have been carried 

out to justify the theoretical results obtained. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Most of the ecological studies depend upon the population size 

of species and are under the influence of ecological and epidemi- 

ological factors. The ecological factors include species interactions 

in the form of competition and predation whereas epidemiolog- 

ical factors include the spread of infectious diseases [1,2] . It is 

becoming biologically relevant to study the effect of disease on 

the dynamics of ecological system. Some of the researchers deal 

with infection in prey species only [3–5] . On the other hand, some 

of them considered the situation where predator is infected with 

some disease [6–10] . Few studies deals with the situation where 

both the prey and predator species have got infected with some 

disease [11–14] . 

In recent years, several researchers [15–22] consider delay 

induced prey–predator model to analyze the stability of the sys- 

tem. Some authors like [23] described the effects of time lag in a 

prey–predator model incorporating parasite infection for the prey 

population. The combined effects of harvesting and delay on the 

dynamics of prey–predator systems has also been investigated 

by Wang and Pei [24] , Pal et al. [25] , Kar [26] , Martin and Ruan 

[27] and Kar and Ghorai [28] . Xiao and Chen [8] proposed a 

predator–prey model with disease in prey. Their model shows that 

the introduction of a time delay in the coefficient of converting 
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prey into predators has both stabilizing and destabilizing effects 

on the positive steady state. 

Agnihotri and Juneja [29] proposed a harvested prey–predator 

SI (Susceptible-Infected) model with disease in predator. Many 

of such situations are outlined in [30] . In this paper, the role 

of differential predation in controlling the spread of disease in 

predator population has been shown. It has been proved that the 

interior equilibrium point is globally stable whenever it is locally 

stable. The role of controlled harvesting in controlling the spread 

of disease is also shown, but in this paper, the effect of time delay 

has not been taken into consideration. We know that almost all 

the processes in ecology involve time delays, so we may not get 

more realistic model without including time lags. In particular, 

Kuang [31] observes that animals take time to digest their feed, 

and this in fact delay their further activities. Keeping in view this 

fact, an eco-epidemiological delay model is proposed and analyzed 

in this paper. Also a constant time delay is incorporated in the 

logistic growth of the prey. The reason behind the consideration 

of delay in prey species is that the prey species take some time 

τ 1 to convert the food into its growth. It is assumed that the viral 

disease is spreading only among the predator species. Also it is 

considered that the reproduction of predators after predating the 

prey population is not instantaneous; thus it will be incorporated 

by taking some time lag τ 2 required for the gestation of predators. 

The paper is structured in the following manner. In the next 

section, we present the model. Section 3 deals with the stability 

analysis of interior equilibrium point. The criteria for the existence 

of Hopf bifurcation around non zero equilibrium point is given in 

Section 4 . In Section 5 , stability of periodic solutions is discussed. 
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Table 2.1 

Variables and parameters used in the system (2.1) . 

Variable/parameters Biological meaning 

k carrying capacity of the environment for prey 

r intrinsic growth rate of prey 

l disease transmission coefficient in predator 

μ, μ′ mortality rates of susceptible and infected 

predators respectively with μ′ > μ

γ , γ ′ catchability coefficients of susceptible and infected 

predators respectively with γ ′ > γ

γ 1 catchability coefficient of prey species 

E 1 harvesting effort rates for prey species 

E harvesting effort rates for predator species (both 

susceptible and infected) 

α, α′ predation rates of susceptible and infected 

predators respectively with α′ < α

β numerical response 

Numerical simulations are carried out in Section 6 , to validate the 

theoretical results obtained. Finally, a brief conclusion is given in 

Section 7 . 

2. Formulation of Model 

After considering the time delays in model by Agnihotri and 

Juneja, our delayed prey–predator model is as follows 

dN 1 

dt 
= r N 1 (t) 

(
1 − N 1 (t − τ1 ) 

k 

)
− αN 1 (t) N 2 (t) − α′ N 1 (t) N 3 (t) 

−γ1 E 1 N 1 (t) 

dN 2 

dt 
= αβN 1 (t − τ2 ) N 2 (t) − μN 2 (t) − γ EN 2 (t) − lN 2 (t) N 3 (t) 

dN 3 

dt 
= α′ βN 1 (t − τ2 ) N 3 (t) − μ′ N 3 (t) − γ ′ EN 3 (t) + lN 2 (t) N 3 (t) 

(2.1) 

(0 ≤ N 1 (0) ≤ k , 0 ≤ N 2 (0), 0 ≤ N 3 (0)) 

The variables and parameters used in system (2.1) are given in 

Table 1 . 

Variable N 1 ( t ) denotes the density of prey species at any time t 

and N 2 ( t ), N 3 ( t ) denote the respective densities of susceptible and 

infected predator species. Also all the parameters in the model are 

assumed to be positive. 

Suppose N 

(0) 
1 

, N 

(0) 
2 

, N 

(0) 
3 

denote the initial functions associated 

with system (2.1) , then 

N 

(0) 
1 

(θ ) = φ1 (θ ) ≥ 0 

N 

(0) 
2 

(θ ) = φ2 (θ ) ≥ 0 

N 

(0) 
3 

(θ ) = φ3 (θ ) ≥ 0 (2.2) 

where θ ∈ [ −τ, 0] , φ = (φ1 , φ2 , φ3 ) ∈ C([ −τ, 0] , R 

3 
+0 

) , 

R 

3 
+0 

= { (N 1 , N 2 , N 3 ) : N 1 ≥ 0 , N 2 ≥ 0 , N 3 ≥ 0 } 

2.1. Positivity and boundedness of the solution 

Lemma 2.1. All the solutions of the system (2.1) which initiate in R 3 +0 
are uniformly bounded. 

Proof. The proof of the lemma is obvious. See [17] . �

Lemma 2.2. For given non negative initial functions (2.2) , the solu- 

tions of the system (2.1) are non negative. 

Proof. The first equation of the system (2.1) gives 

dN 1 

dt 
= N 1 ( t ) 

[ 
r 

(
1 − N 1 ( t − τ1 ) 

k 

)
− αN 2 ( t ) − α′ N 3 ( t ) − γ1 E 1 

] 

which can be integrated to give 

N 1 (t) = N 

(0) 
1 

exp 

[∫ ∞ 

0 

{
r 

(
1 − N 1 (t − τ1 ) 

k 

)

−αN 2 (t) − α′ N 3 (t) − γ1 E 1 

}
dt 

]
(2.3) 

Similarly from second and third equation of (2.1) , we get 

N 2 (t) = N 

(0) 
2 

exp 

[∫ ∞ 

0 

{
αβN 1 (t − τ2 ) − μ − γ E − lN 3 (t ) 

}
dt 

]
(2.4) 

N 3 (t) = N 

(0) 
3 

exp 

[∫ ∞ 

0 

{
α′ βN 1 (t − τ2 ) − μ′ − γ ′ E + lN 2 (t ) 

}
dt 

]
(2.5) 

Hence, Eqs. (2.3) –(2.5) proves the non negativity of the variables 

N 1 ( t ), N 2 ( t ), N 3 ( t ) [32] . �

3. Existence and stability of interior equilibrium point 

Case 1. τ = 0 we are only interested with endemic equilibrium 

point E ∗(N 

∗
1 , N 

∗
2 , N 

∗
3 ) of the system where all the populations 

coexists. 

N 

∗
1 = k 

(
1 − (αμ′ − α′ μ) + (αγ ′ − α′ γ ) E + lγ1 E 1 

rl 

)

N 

∗
2 = −α′ βN 

∗
1 − μ′ − γ ′ E 

l 

N 

∗
3 = 

αβN 

∗
1 − μ − γ E 

l 

which exists provided 

r − γ1 E 1 > (αμ′ − α′ μ) + (αγ ′ − α′ γ ) E (3.1) 

and 

α′ βN 

∗
1 − μ′ 
γ ′ < E < 

αβN 

∗
1 − μ

γ
(3.2) 

i.e. a reasonable harvesting effort is required for the existence of 

all the three populations. 

In [29] it is already proved that this interior equilibrium point 

become globally stable whenever it is locally stable. 

Case 2. τ � = 0 

To simplify the analysis, both the delays are assumed to be of 

equal magnitude i.e. τ 1 = τ 2 = τ . However the model has been 

simulated extensively for unequal delays. The Characteristic roots 

corresponding to the equilibrium E ∗(N 

∗
1 , N 

∗
2 , N 

∗
3 ) are given by the 

equation ∣∣∣∣∣∣
λ + 

rN ∗1 
k 

e −τλ αN 

∗
1 α′ N 

∗
1 

−αβN 

∗
2 e 

−τλ λ lN 

∗
2 

−α′ βN 

∗
3 e 

−τλ −lN 

∗
3 λ

∣∣∣∣∣∣ = 0 

The characteristic equation becomes 

λ3 + B 1 λ + e −τλ(Aλ2 + Bλ + C) = 0 (3.3) 

where A = 

rN ∗
1 

k 
, B = α2 βN 

∗
1 N 

∗
2 + α′ 2 βN 

∗
1 N 

∗
3 and C = 

l 2 rN ∗
1 

N ∗
2 

N ∗
3 

k 
, 

B 1 = l 2 N 

∗
2 

N 

∗
3 
. 

For stability of E ∗(N 

∗
1 
, N 

∗
2 
, N 

∗
3 
) , all the eigenvalues of charac- 

teristic Eq. (3.3) should have negative real parts. It is difficult to 

establish the conditions under which the Eq. (3.3) has all roots 

with negative real parts. Therefore, the method of stability change 

has been adopted to discuss the stability and Hopf bifurcation of 

the system (2.1) . In the following analysis, the parameter delay 
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