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a b s t r a c t 

In this paper, the problem concerning synchronization is investigated for complex networks with time 

delay and asymmetric coupling. By decomposing the asymmetric coupling matrix and employing Lya- 

punov functional method, sufficient conditions are obtained for synchronization. Finally, two examples 

are reported to illustrate the effectiveness of some proposed methods. 
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1. Introduction 

Complex networks lie in many fields of our daily life, such 

as the Internet, World Wide Web, communication networks, so- 

cial networks, genetic regulatory networks, power grid networks, 

and so on (see [5,19,20,25] ). The word synchronization comes from 

Greek, which means share time .Synchronization of complex net- 

works of dynamical systems has received a great deal of attention 

from the nonlinear dynamics community. In the past decades, spe- 

cial attention has been focused on the synchronization of chaotic 

dynamical systems, particularly large-scale and complex networks 

of chaotic oscillators [2,7,26,27] . Recently, synchronization in differ- 

ent small-world and scale-free dynamical network models has also 

been carefully studied [1,22,28,29] . In recent years, due to wide 

applications, the problem on synchronization in various dynamical 

networks has been extensively studied in present literature see e.g. 

[6,8–11,13–16,21,24,30,31,33,35] and references therein. These stud- 

ies may shed some new lights on the synchronization phenomenon 

in various real-world complex networks. 

In real world situation, time delay is ubiquitous in many phys- 

ical systems due to the finite switching speed of amplifiers, finite 

signal propagation time in networks, finite reaction times, memory 

effects and so on. Furthermore, the time delay may cause unde- 

sirable dynamic behaviors such as oscillation, instability and poor 
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performance. Therefore, the synchronization problem of complex 

dynamical networks with time delays has become a topic of both 

theoretical and practical importance. In the past decades, many re- 

searchers have contributed to the area of synchronization of de- 

layed complex networks. In [23] , Song has studied cluster synchro- 

nization problem for an array of coupled stochastic delay neural 

networks via pinning control strategy. Synchronization of edge- 

colored networks was studied from adaptive control and pinning 

control approaches [32] . Deng et al. in [3] investigated synchro- 

nization of a complex network with the non-derivative and deriva- 

tive coupling. Both linear and adaptive feedback control methods 

are utilized to design controller. The problem of function projective 

synchronization have been obtained for general complex dynami- 

cal networks with time delay via hybrid feedback control method 

[4] . 

Some previous studies have been conducted on the following 

two cases: (i) linearly (or nonlinearly) coupled complex networks 

(i.e., the coupling function is linear (or nonlinear)) [4,17,18] ; (ii) 

undirected interaction topology (i.e., the coupling matrix should be 

symmetric or irreducible) [36] . However, very little is known about 

the complex networks with asymmetric coupling matrix [12,34] , 

which are important in practical applications, for instance, via 

broadcasting. In realistic, the influences should be different to each 

other, and hence the coupling configuration matrices of networks 

should be restructured in a more general asymmetric form. Com- 

pared with [12,34] , we will utilize the matrix splitting method to 

deal with asymmetric coupling. 
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Motivated by the above discussions, in this paper, we will study 

the synchronization of complex dynamical networks with time 

delay and asymmetric coupling. We decompose asymmetric ma- 

trix into two matrices, use some sufficient methods to deal with 

coupling matrix and employ Lyapunov functional. So some suf- 

ficient conditions for synchronization of complex networks with 

time delay and asymmetric coupling are derived. Therefore, the 

conservatism of synchronization criteria is reduced. Finally, ex- 

amples are given to illustrate the effectiveness of the proposed 

methods. It is remarked that this paper differs from the works in 

[3,17,18,30,32] in mainly the following points: (1) they did not con- 

sider time delay linear item in [3,17,18,30,32] ; (2) the coupling ma- 

trix is assumed to be symmetric in [3,17,18,30,32] , here, we reduce 

constraint about the coupling matrix, the coupling matrix is de- 

fined as asymmetric. When τ = 0 , the results of [17,18,30,32] are 

the special case of Corollary 3.1 ; (3) they required the coupling 

matrix that ‖ A ‖ = γ > 0 and ‖ A τ‖ ≤ k in [30] , we need not these 

conditions. 

The remainder of the paper is organized as follows. The net- 

work model is introduced and some necessary lemmas are given 

in Section 2 . Section 3 discusses synchronization of the complex 

dynamical networks with time delay and asymmetric coupling ma- 

trix. The theoretical results are verified numerically by several rep- 

resentative examples in Section 4 . Finally, this paper is concluded 

in Section 5 . 

Throughout this paper, � 

n denotes n-dimensional Euclidean 

space and � 

n × n is the set of all n × n real matrices. For symmetric 

matrices X and Y , the notation X > Y ( X ≥ Y ) means that the matrix 

X − Y is positive definite (nonnegative). 

2. Preliminaries 

Consider a complex dynamical network consisting of N identical 

nodes with asymmetric coupling: 

˙ x i (t) = f (x i (t)) + Ax i (t − τ ) + c 

N ∑ 

j=1 

g i j �x j (t) , (1) 

where i = 1 , 2 , . . . , N, x i (t) = (x i 1 (t ) , . . . , x in (t )) T ∈ � 

n is the state 

vector of node i, f : � 

n → � 

n is continuously differentiable. c > 0 is 

the coupling strength, � = diag(γ1 , . . . , γn ) is a nonnegative ma- 

trix. G = (g i j ) N× N is the coupling matrix satisfying 
∑ N 

j=1 g i j = 0 . 

The off-diagonal elements of G are not assumed to be nonnegative. 

Definition 2.1. The dynamical networks (1) are said to achieve 

synchronization if 

lim 

t→∞ 

‖ e i (t) ‖ = lim 

t→∞ 

‖ x i (t) − s (t) ‖ = 0 , i = 1 , 2 , . . . , N, 

where ‖ · ‖ stands for the Euclidean vector norm and s ( t ) ∈ � 

n is a 

solution of an isolate node, satisfying ˙ s (t) = f (s (t)) + As (t − τ ) . 

Define the error vectors as 

e i (t) = x i (t) − s (t) (i = 1 , 2 , . . . , N) . (2) 

Then, the following error dynamical network can be obtained: 

˙ e i (t) = f (x i (t)) − f (s (t)) + Ae i (t − τ ) + c 

N ∑ 

j=1 

g i j �e j (t) , (3) 

Assumption 1 (QUAD) . There exists a positive definite diagonal 

matrix Q = diag(q 1 , . . . , q n ) , a diagonal matrix � = diag(δ1 , . . . , δn ) 

satisfying δj ≥ 0 for j = 1 , . . . , n, and a constant ε > 0, such that 

(u − v ) T Q[ f (u ) − f (v ) − �(u − v )] ≤ −ε(u − v ) T (u − v ) 

holds for any u, v ∈ � 

n . 

Assumption 2. g i j + g ji ≥ 0 , i, j = 1 , . . . , N, i 
 = j. 

Lemma 2.1. Let ∀ x, y ∈ � 

n , then 

2 x T y ≤ x T x + y T y. 

3. Main results 

In this section, the synchronization of complex network with 

delay and asymmetric coupling is considered. 

Theorem 3.1. Assume that the Assumptions 1 and 2 hold. For the 

complex system (1) can achieve synchronization if there exists diagonal 

matrices P > 0, Q > 0, and ε is sufficiently large positive constant, such 

that the following inequalities hold: 

ε ≥ 1 

2 

+ q k δk + cq k γk λmax ( ̆G ) + p k (4) 

and 

λmax (Q AA 

T Q 

T ) ≤ λmax (P ) (5) 

where λmax ( ̆G ) is the largest eigenvalue of Ğ and k = 1 , . . . , N. 

Proof. Construct a Lyapunov functional as follows: 

V (e t ) = 

1 

2 

N ∑ 

i =1 

e T i (t) Qe i (t) + 

N ∑ 

i =1 

∫ t 

t−τ
e T i (s ) P e i (s ) ds. (6) 

The derivative of V ( e t ) along the trajectories of Eq. (3) is 

˙ V (e t ) = 

N ∑ 

i =1 

e i (t) Q ̇ e i (t) + 

N ∑ 

i =1 

e T i (t) Pe i (t) −
N ∑ 

i =1 

e T i (t − τ ) Pe i (t − τ ) 

= 

N ∑ 

i =1 

e T i (t) Q 

[ 

f (x i (t)) − f (s (t)) + Ae i (t − τ ) + c 

N ∑ 

j=1 

g i j �e j (t) 

] 

+ 

N ∑ 

i =1 

e T i (t) Pe i (t) −
N ∑ 

i =1 

e T i (t − τ ) Pe i (t − τ ) 

= 

N ∑ 

i =1 

e T i (t) Q 

[
( f (x i (t)) − f (s (t)) − �e i (t)) 

+ (�e i (t) + Ae i (t − τ ) + c 

N ∑ 

j=1 

g i j �e j (t) ) 

]

+ 

N ∑ 

i =1 

e T i (t) Pe i (t) −
N ∑ 

i =1 

e T i (t − τ ) Pe i (t − τ ) . (7) 

According to Assumption 1 , we get 

˙ V (e t ) ≤ −ε 
N ∑ 

i =1 

e T i (t) e i (t) 

+ 

N ∑ 

i =1 

e T i (t) Q 

[ 

�e i (t) + Ae i (t − τ ) + c 

N ∑ 

j=1 

g i j �e j (t) 

] 

+ 

N ∑ 

i =1 

e T i (t) P e i (t) −
N ∑ 

i =1 

e T i (t − τ ) P e i (t − τ ) (8) 

Using Lemma 1, we can obtain 

˙ V (e t ) ≤ −ε 
N ∑ 

i =1 

e T i (t) e i (t) + 

1 

2 

N ∑ 

i =1 

e T i (t) e i (t) 

+ 

1 

2 

N ∑ 

i =1 

e T i (t − τ ) QAA 

T Q 

T e i (t − τ ) 

+ 

N ∑ 

i =1 

e T i (t) P e i (t) −
N ∑ 

i =1 

e T i (t − τ ) P e i (t − τ ) + M. (9) 

where M = 

∑ N 
i =1 e 

T 
i 
(t) Q[�e i (t) + c 

∑ N 
j=1 g i j �x j (t) ] . 
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