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a b s t r a c t 

A database of ten type 1 diabetes patients wearing a continuous glucose monitoring device has enabled to 

record their blood glucose continuous variations every minute all day long during fourteen consecutive 

days. These recordings represent, for each patient, a time series consisting of 1 value of glycaemia per 

minute during 24 h and 14 days, i.e., 20,160 data points. Thus, while using numerical methods, these 

time series have been anonymously analyzed. Nevertheless, because of the stochastic inputs induced by 

daily activities of any human being, it has not been possible to discriminate chaos from noise. So, we have 

decided to keep only the 14 nights of these ten patients. Then, the determination of the time delay and 

embedding dimension according to the delay coordinate embedding method has allowed us to estimate 

for each patient the correlation dimension and the maximal Lyapunov exponent. This has led us to show 

that type 1 diabetes could indeed be a chaotic phenomenon. Once this result has been confirmed by the 

determinism test, we have computed the Lyapunov time and found that the limit of predictability of this 

phenomenon is nearly equal to half the 90 min sleep-dream cycle. We hope that our results will prove 

to be useful to characterize and predict blood glucose variations. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Diabetes is a chronic disease which affects more than two hun- 

dred millions of people in the world [37] . There are two main 

types of diabetes: type 1 and type 2. In the case of type 1 diabetes, 

the lack of insulin due to the destruction of insulin-producing beta 

cells in the pancreas leads to diabetes mellitus in which insulin 

is required for survival to prevent the development of ketoacido- 

sis, coma and death. Type 2 diabetes is characterized by disorders 

of insulin action and insulin secretion, including insulin resistance 

[2] . This work only concerns type 1 diabetes. 

Insulin-dependent diabetes or type 1 diabetes is character- 

ized by dramatic and recurrent variations in blood glucose lev- 

els. The effects of such variations are irregular (erratic) and un- 
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predictable hyperglycemias, sometimes involving ketoacidosis, and 

sometimes serious hypoglycemias. Nowadays, the development of 

Continuous Glucose Monitoring (CGM) devices makes it possible 

to record blood glucose every minute during two weeks providing 

endocrinologists thousands of data in the form of time series. This 

has also led to prediction of continuous blood glucose variations 

based on computational methods such as support vector machine 

[17] . 

In the middle of the eighties, Wolf et al. [38] proposed an al- 

gorithm allowing the estimation of non-negative Lyapunov expo- 

nents from an experimental time series. Thus, determination of 

Lyapunov exponents enabled, on the one hand, to decide whether 

the time series is chaotic or not and, on the other hand, to as- 

sess the Lyapunov time corresponding to the limit of predictabil- 

ity of the observed phenomenon. Since this algorithm was first 

published in Fortran code, many other versions have been devel- 

oped in various languages such as C and C ++ [25] . Recently, this 

Fortran code has been implemented in MatLab by Wolf, as well 
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as in Mathematica by Ruskeepää, see http://library.wolfram.com/ 

infocenter/MathSource/8775/ . This Mathematica software is used 

in the present work. The software is shortly explained in Rus- 

keepää [33] and is also used in http://demonstrations.wolfram. 

com/ChaoticDataMaximalLyapunovExponent/ (2017). 

Long after the famous French mathematician, physicist and en- 

gineer, Henri Poincaré had discovered “deterministic chaos” in his 

seminal works concerning the motion of celestial bodies [29] , 

many scientists searched for traces of chaotic behavior in various 

phenomena. The signature of chaos is the very well-known prop- 

erty of Sensitive Dependence upon Initial Conditions which makes 

the observed phenomenon unpredictable in long term. In the be- 

ginning of the sixties, Edward Norton Lorenz was the very first to 

identify such a feature in meteorology [27] . More than ten years 

later, Sir Robert May demonstrated the existence of “complex dy- 

namics” (chaos) in ecological models [28] . 

During the following decades, scientists highlighted chaotic be- 

havior in human body. Indeed, according to Ives [19] “innumer- 

able, entwined (nonlinear) feedback loops regulate our internal 

processes, keeping us within the narrow bounds needed for sur- 

vival. Despite this regulation, our systems are aperiodic and unpre- 

dictable in the long term.” Thus, a prime example of chaos was 

found in the brain [3] and then, in the beating of the heart [10,35] . 

Although type 1 diabetes is widely and intuitively considered by 

endocrinologists and clinicians as a chaotic phenomenon [7,15,26] , 

this has not yet been established by numerical methods, to our 

knowledge. 

In this work, starting from a database of glucose from ten type 

1 diabetes patients and while using well-known numerical algo- 

rithms with Mathematica, we give support to the conclusion that 

type 1 diabetes is a chaotic phenomenon and we provide the Lya- 

punov time corresponding to the limit of predictability of this phe- 

nomenon. These results will prove to be very useful to characterize 

and predict blood glucose variations. 

This paper is organized as follows. In Section 2.1 , we briefly 

present the three main continuous glucose monitoring devices 

and detail the main features of the one used in this study. In 

Section 2.2 , we recall the method of time delay reconstruction, also 

referred to as delay reconstruction and phase space reconstruction 

[29,36] , and the definitions of time delay and embedding dimen- 

sion. To determine their proper values we use, respectively, average 

mutual information [13] and the method of false nearest neighbors 

proposed by Kennel et al. [23] . We recall the method of correla- 

tion exponent [16] to estimate the correlation dimension and the 

method of local divergence rates [20] to estimate the maximal Lya- 

punov exponent. 

In Section 3.1 , we present, in some detail, all the results for the 

glucose data of patient 1. Then, in Section 3.2 , we briefly summa- 

rize the results of all the ten patients. We also apply a direct test 

for determinism in a time series [22] and the programs by Perc 

[30] to state that type 1 diabetes is likely a chaotic phenomenon. 

Section 4 summarizes the results of the article, e.g. , an estimate of 

the Lyapunov time which is nearly equal to half the 90 min sleep- 

dream cycle. 

2. Materials and methods 

2.1. Continuous glucose monitoring systems 

Continuous glucose monitoring devices began to be developed 

in the eighties. However, they became available for practical use 

only twenty years ago with the miniaturization and development 

of electronic sensors combined to growing storage capacities. These 

systems, which have been proven to reliably reflect glucose lev- 

els [4] , replace henceforth the classical finger prick blood glucose 

readings by monitoring interstitial fluid (ISF) glucose levels contin- 

uously. Interstitial fluid is a thin layer of fluid that surrounds the 

cells of the tissues below the skin [5,8,11] . That’s the reason why 

there is a 5 to 10 min delay in interstitial fluid glucose response to 

changes in blood glucose. This result of great importance will need 

to be compared to the Lyapunov time obtained in this study (see 

Section 4 ). 

Today, the three main manufacturers which propose devices 

with continuous glucose monitoring reading are Abbott (Freestyle 

Navigator II), Medtronic (MiniMed coupled with Veo-pump), and 

Novalab which offers the reader Dexcom G4 coupled to the insulin 

pump Animas Vibe. Whatever the system, it is composed of two 

parts. The glucose sensor which has a small, flexible tip that, in- 

serted just under the skin, continuously measures the glucose con- 

centration in the interstitial fluid and stores data during several 

days. The blood glucose reader is used to scan the sensor and dis- 

plays the current glucose reading based on the most recently up- 

dated glucose value during the latest hours of continuous glucose 

data. Some readers are also coupled to an external insulin pump 

(Paradigm VEOTM Medtronic or Animas VibeTM of Novalab). 

In this work, we have chosen to use the Abbott (Freestyle Navi- 

gator II) system because the blood glucose reader records the blood 

glucose variations continuously every minute all day long during 

fourteen consecutive days. This represents, for each patient, one 

value of glycaemia per minute during 24 h and 14 days, i.e., 20,160 

data. Thus, ten type 1 diabetes patients have accepted to provide 

us the recordings of their blood glucose during fourteen consecu- 

tive days so that they could be anonymously analyzed. 

2.2. Methods 

Following the works of Takens [36] , Sauer et al. [34] and Abar- 

banel [1] , summarized in Kodba et al. [25] , we consider the recon- 

struction of the attractor in an m -dimensional phase space starting 

from the time series { x 1 , . . . , x i , . . . , x T } of blood glucose variations 

for each patient. Here x i denotes the glycaemia in i th minute. Ac- 

cording to Takens [36] , the reconstructed attractor of the original 

system is given by the vector sequence 

p ( i ) = 

(
x i −(m −1) τ , . . . , x i −2 τ , x i −τ , x i 

)
(1) 

where τ and m are the time delay and the embedding dimen- 

sion, respectively. Takens’ famous theorem states that for a large 

enough m , this procedure provides a one-to-one image of the orig- 

inal system. It follows that the attractor constructed according to 

Eq. (1) will have the same dimension and Lyapunov exponents as 

the original system. To reconstruct the attractor successfully, perti- 

nent values of τ and m have to be accurately determined. 

2.2.1. Time delay 

Two criteria are to be taken into account for the estimation of 

the time delay τ : 

- τ has to be large enough because the information we get from 

measuring the value of x at time i + τ should be significantly 

different from x at time i . 

- τ must not be larger than the time in which the system loses 

memory of its initial state. This is important for chaotic sys- 

tems, which are unpredictable and lose memory of the ini- 

tial state. 

Fraser and Swinney [13] defined the mutual information be- 

tween x i and x i + τ as a suitable quantity for determining τ . The 

mutual information between x i and x i + τ measures the quantity of 

information according to the following expression 

I ( τ ) = 

∑ 

h 

∑ 

k 

P h,k ( τ ) log 2 
P h,k ( τ ) 

P h P k 
. (2) 
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