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A modified procedure is proposed in this paper to solve the limitations of digraph cell mapping method 

in accurately analyzing the global properties of dynamical system, such as fractal basin boundaries. Firstly 

a rough cell structure is applied to the generalized cell mapping (GCM) method to obtain the general 

global properties of dynamical systems with digraph algorithm, and then a procedure based on the com- 

posite cell coordinate system method is proposed to increase the calculation accuracy. In order to further 

increase the calculation speed, a simple and feasible parallel strategy is applied during the creation pro- 

cess of one-step transition probability matrix for the GCM method. Meanwhile, the memory consumption 

can be greatly reduced by storing the one-step transition probability matrix as finite separate data files. 

The accurate global properties of two examples, a nonlinear oscillator with fractal basin structure and the 

Lorenz system, are demonstrated to show the effectiveness of our proposed improvement strategy. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The researches of complex dynamical systems have always re- 

ceived a great deal of attention of many scholars [1–12] , such as 

crisis, bifurcation, response, first-passage problem, optimal control, 

dynamic behavior, etc. Different analytical or numerical procedures 

are proposed to deal with these issues. Among these methods, cell 

mapping method is an efficient numerical tool not only for deter- 

ministic dynamical systems but also for stochastic dynamical sys- 

tems, which was first proposed by Hsu [13] and called the simple 

cell mapping (SCM) method. Then it was extended to the version 

of the generalized cell mapping (GCM) method [14] . All these de- 

velopments and applications have been gathered in a monograph 

[15] . For the GCM method, Hsu presented a theory of subdomain- 

to-subdomain global transient analysis of dynamics in [16] . The in- 

troduction of the theory of partially ordered sets and the theory of 

digraphs offered the GCM method a new way to analyze the mul- 

tifaceted complex behavior of nonlinear systems [17] . 

Many improvements have appeared since the cell mapping 

method was proposed. For the SCM method there was interpolated 

cell mapping [18] , adjoining cell mapping [19] , Poincare-like sim- 

ple cell mapping [20] . Based on the digraph theory, the generalized 

cell mapping method using digraph was proposed by [1,2] , which 

can obtain the unstable invariant set of dynamical systems. By in- 

troducing two new concepts, the digraph cell mapping method 

was proposed by [21,22] , which can obtain the stable and unsta- 
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ble manifolds of dynamical systems. Zou and Xu [23] proposed 

another modified method without using the digraph algorithm for 

the GCM method. Through the combination of point mapping and 

cell mapping, a few improved algorithms were presented such 

as point mapping under cell reference method [24–26] , expanded 

point mapping method [27] and composite cell coordinate sys- 

tem method [28] etc. For the global analysis of dynamical sys- 

tems, there are some other extension methods similar to cell map- 

ping method using digraph, such as the set oriented method [29–

31] and the symbolic dynamics method [32,33] . They can obtain 

the global properties such as attractors, saddles and invariant sets. 

But they don’t contain some useful information including basins of 

attraction and basin boundaries. 

In order to increase the calculation speed, the parallel comput- 

ing method was introduced into the cell mapping method [34] , 

where a parallel strategy was proposed and applied to a two- 

dimensional system. For a higher-dimensional dynamical system, 

the parallelized multi-degrees-of-freedom cell mapping method 

was developed by Eason and Dick [35] , which mainly focused 

the attractors and the basins of attraction. Recently, Xiong et al. 

[36,37] proposed a parallel cell mapping method for global anal- 

ysis of nonlinear dynamical systems, which can be applied to the 

high-dimensional systems. 

To accurately predict the long-term behavior and global anal- 

ysis of nonlinear dynamical systems by using the GCM method, 

some adaptive refinement techniques were put forward [30,38,39] , 

which mainly focused the stationary densities, attractors and in- 

variant measures. Further, Guder and Kreuzer [40] computed a 

series of sets that approximates the basin of attraction by the 
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adaptive subdivision. However, how to obtain some other impor- 

tant global properties is still a challenge, such as fractal basin 

boundaries, saddles embedded in them, and invariant manifolds of 

saddles. Although they can be shown schematically by the GCM 

method, some accurate computing methods should be considered 

to precisely represent them. 

In this paper, all the global properties, such as attractors, basins 

of attraction, basin boundaries, saddles and invariant manifolds, 

will be determined firstly by the GCM method and then the ac- 

curate results will be obtained based on the composite cell coordi- 

nate system method. Meanwhile, the ability of the proposed proce- 

dure to deal with the complex dynamical properties, such as frac- 

tal basin boundary, will be shown. Otherwise, a simple and feasible 

parallel strategy is applied to increase the calculation speed. 

This paper is organized as follows. In Section 2 , the review of 

generalized cell mapping method is firstly introduced. And then 

the detailed implementation of our proposed procedure will be 

discussed. Section 3 respectively provides a two dimensional dy- 

namical system with fractal basin boundary and the Lorenz system 

to illustrate the effectiveness of our proposed procedure. Finally, 

some conclusions are given in Section 4 . 

2. The method 

2.1. The digraph cell mapping method 

In order to review the GCM method, we can refer to the work 

[17] . For an n -dimensional dynamical system 

˙ x = F (x , t) , x ∈ D (1) 

where x is the state vector, D is the interesting bounded region 

in the state space R 

n and F is a vector value function. By dividing 

the bounded region D into finite number of cells, the GCM method 

transforms the system (1) to the cell mapping system 

p (m + 1) = P · p (m ) or p (m ) = P 

m · p (0) (2) 

where P is the one-step transition probability matrix with the ( i, 

j ) th element p ij , the computation of which is as follows. For a cell 

j, S points are uniformly selected within it. Then there will be S 

trajectories generated by simulating the system (1) with the time 

length �T . If S i points fall in cell i from cell j , then the one-step 

transition probability p i j = S i /S . Once the one-step transition proba- 

bility matrix P is calculated, the global properties of system (1) can 

be obtained based on the digraph algorithm. If we want to analyze 

the qualitative properties, we just need consider the generalized 

cell mapping to a digraph, where p ij > 0 means that there exists 

a directional arc connecting the vertices j and i . By further anal- 

ysis of the strongly connected sub-digraph of the digraph [21,22] , 

the global qualitative properties of dynamical systems can be ob- 

tained, which contain attractors, basins of attraction, basin bound- 

aries, saddles, stable and unstable manifolds etc. 

2.2. The proposed method 

2.2.1. Creation of one-step transition probability matrix 

Two important issues for the GCM method are respectively long 

calculation times and huge memory demands. To reduce computer 

memory consumption of the GCM method, the analysis process 

can be divided into two independent portions: creation of one- 

step transition probability matrix P and qualitative analysis. Actu- 

ally, most of calculation times of GCM method are spent in the 

process of creating one-step transition probability matrix. There- 

fore, we mainly consider how to reduce the computing times in 

this portion. The implementation procedure of parallel strategy is 

shown as follows, which is easily realized with high efficiency. 

As the generation of every trajectory is separately from any 

other trajectory, it is very easy to parallelize the creation process of 

one-step transition probability matrix. Suppose that the interesting 

region D is divided into N cells, there are S trajectories are gener- 

ated from each cell to determine the one-step transition probabil- 

ity of this cell. Denote the total times of computing the matrix P 

are T 1 . As the computational processes of one-step transition prob- 

ability of each cell i , i = 1 , 2 , . . . , N are independent, the calcula- 

tion times will be reduced to T 2 = T 1 / N p if there are N p threads to 

simultaneously compute the one-step transition probability of all 

the N cells. Meanwhile, each thread will generate a data file after 

computing and so the information of the N p threads needs not to 

be exchanged. Therefore, the calculation times are completely de- 

pendent on the number of threads, which can be nearly N p times 

faster in theory compared with the conventional approach. In this 

work the number of thread N p is 24 on a graphic workstation. 

When all the cells are computed, the data of matrix P are ob- 

tained and stored as N p separate file. Then by reading these files 

into memory, the qualitative properties can be calculated by di- 

graph algorithm. In order to read these data quickly, the data of 

matrix P is stored in binary format in the creation process of one- 

step transition probability matrix. Because the one-step transition 

probability matrix is not stored during the global analysis process, 

the memory consumption can be greatly reduced. 

2.2.2. Determination of global properties 

Another challenge that should be considered is the accuracy 

of global properties for the GCM method. For this question, we 

adopt a procedure based on the composite cell coordinate system 

method [28] to deal with. First, a rough cell structure of region D is 

used, the global properties of dynamical system can be obtained by 

using the digraph algorithm, including attractors A 

′ 
i 
, corresponding 

basins of attraction B ′ 
i 
, basin boundaries B ′ , saddles S ′ , stable man- 

ifold SM 

′ and unstable manifold UM 

′ , where i = 0 , 1 , 2 , . . . , N a and 

N a is the total number of attractors. A 

′ 
0 

and B ′ 
0 

represent respec- 

tively the sink cell and its basin of attraction. The detailed pro- 

cesses to determine the accurate global properties are as follows. 

2.2.2.1. Attractors. An attractor is already a stable invariant set. The 

set of the obtained attractor A 

′ 
i 

should contain the true attractor. 

Thus the new set constituted by the iterative trajectory after some 

times from this attractor will tend to the true attractor. In order to 

obtain the more accurate attractor, we divide each cell of attractor 

A 

′ 
i 

into finite sub-cells. For each sub-cell, a trajectory is generated 

with its center as the initial value. Record the point of this trajec- 

tory after some times into an array. When all the cells of attractor 

A 

′ 
i 

are computed, the points in this array constitute a new set. If 

the value of measure between the new set and the previous set is 

less than a given error, the iteration stops and the new set is the 

true attractor, denoted as A i . 

2.2.2.2. Basins of attraction and basin boundaries. The accurate 

basin of attraction B i , i = 1 , 2 , . . . , N a should contain the whole 

basin B ′ 
i 

and parts of the corresponding basin boundary. Thus the 

basin of attraction B ′ 
i 

needs not to be divided. The basin of attrac- 

tion B ′ 
0 

may not be the true basin of infinity. It may be a part of 

basin of attraction B ′ 
i 
, i = 1 , 2 , . . . , N a . To determine this, we just 

need consider the location of the trajectory after iteration from the 

center of one cell within basin B ′ 
0 
. If the trajectory locates the basin 

B ′ 
i 

then this cell is the point of the true basin of attraction B i ; oth- 

erwise, it is the true basin of infinity. 

For each cell within basin boundary B ′ , divide it into finite sub- 

cells. For each sub-cell, some given sample trajectories are evenly 

generated within it. If these trajectories after iteration are all lo- 

cated in the same basin of attraction B ′ 
i 
, then the sub-cell is the 
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