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In this paper, we deal with Abel equations: dx 
dy 

= A (x ) y 2 + B (x ) y 3 , where A ( x ) and B ( x ) are real polyno- 

mials. If a solution y = ϕ(x ) of the above equations satisfies that ϕ(0) = ϕ(1) , then we say that it is a 

periodic solution. If a periodic solution is isolated, then we call it a limit cycle. If a limit cycle y = ϕ(x ) 

is a rational function but not a polynomial, then we call it a nontrivial rational limit cycle. 

Firstly, we study the existence of nontrivial rational limit cycles. We prove that there exist Abel equa- 

tions, which have at least two nontrivial rational limit cycles, and there also exists other Abel equations, 

which have at least one nontrivial rational limit cycle and one non-rational limit cycle. Secondly, we dis- 

cuss the relation between the existence of nontrivial rational limit cycle and the degrees of A ( x ) and B ( x ). 

Finally we show that the multiplicity of a nontrivial rational limit cycle can be unbounded. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction and the main results 

In this paper, we consider Abel equations, 

d y 

d x 
= A (x ) y 2 + B (x ) y 3 (1) 

where x and y are real variables, A ( x ) and B ( x ) are real polynomials. 

These equations are interesting since they occur in many models 

of real phenomena (see for instants [2,9,12] ), or are a tool to study 

several subcases of Hilbert 16th problem on the number of limit 

cycles of planar polynomial differential equations (see [7,15] ). 

Denote by y = ψ(x, y 0 ) the solution of system (1) such that 

ψ(0 , y 0 ) = y 0 . We say that the solution y = ψ(x, y 0 ) of system 

(1) is periodic if ψ(1 , y 0 ) = y 0 . If ψ( x, y 0 ) is well defined in 

[0, 1], then we can define a map � : R → R such that �(y 0 ) = 

ψ(1 , y 0 ) − y 0 . Obviously, �(y 0 ) = 0 if and only if system (1) has 

a periodic solution starting at y 0 . The periodic solution ψ( x, y 0 ) 

is called as a limit cycle if y 0 is an isolated zero of �( y 0 ), at the 

same time, the multiplicity of y 0 as a zero of �( y 0 ) is called as 

the multiplicity of the associated limit cycle. Specially, when the 

multiplicity of a limit cycle is 1, this limit cycle will be said to be 

simple or hyperbolic. 

The problem of the number of limit cycles of system (1) has 

been widely studied (see for instance [14] or [10] and therein). Of 

course, there are authors who consider other related problems. For 

example, in [3–6,17] , the authors consider the problem of centers, 

that is, near the trivial solution y = 0 , all the solutions of system 
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(1) are periodic; in [1,8,13] , the authors consider the problems of 

centers or limit cycles under the conditions that the functions f ( x ) 

and g ( x ) are trigonometric polynomials or only analytic functions. 

Specially, in [11] , J. Giné, M. Grau and J. Libre consider the prob- 

lem of polynomial limit cycles of the following system 

d y 

d x 
= A 0 (x ) + A 1 (x ) y + · · · + A n (x ) y n , 

where A i ( x ) for i = 0 , 1 , 2 . . . , n are real polynomials in x . Of course 

here a limit cycle y = ψ(x, y 0 ) is called as a polynomial limit cycle 

if the function ψ( x, y 0 ) is a polynomial in x , 

When n = 3 and A 0 (x ) = A 1 (x ) = 0 , the above system becomes 

system (1) . Now for system (1) , the results in [11] can be written 

as 

Theorem 1. For system (1) , the following statements hold. 

(a) Any polynomial limit cycle of system (1) has the form y = c. Fur- 

thermore, if there exists a polynomial limit cycle y = c, c � = 0 , then 

except for the polynomial solution y = 0 , there is no other polyno- 

mial solution, thus no other polynomial limit cycle. 

(b) For any given integer k with k ≥ 2, there exist polynomials A ( x ) 

and B ( x ) such that y = 0 is a polynomial limit cycle of multiplicity 

k of system (1) . 

It is worth pointing out that if a polynomial limit cycle y = c, 

c � = 0 , exists, then it is hyperbolic. The proof will be found in the 

next section. 

Note that in [11] , the authors only consider polynomial solu- 

tions, but what happens when we consider other solutions, such 

as algebraic function solutions? Recall the a function y = φ(x ) is 
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called algebraic if and only if there exists a polynomial f ( x, y ) such 

that f ( x, φ( x )) ≡ 0. We call that a limit cycle y = ψ(x, y 0 ) of system 

(1) is an algebraic limit cycle if ψ( x, y 0 ) is algebraic. 

To solve the problem of algebraic limit cycles, it is natural for 

us to start from the simple case: rational case, in other words, the 

limit cycle y = ψ(x, y 0 ) can be written as y = 

q (x ) 
p(x ) 

, where p ( x ), q ( x ) 

are polynomials and (p(x ) , q (x )) = 1 . Since we are only interested 

in rational limit cycles, which are not polynomial limit cycles, we 

will call polynomial limit cycles trivial rational limit cycles and 

other rational limit cycles nontrivial rational limit cycles. In this 

paper we will show that new phenomena occur. 

As usual, we consider the problem of rational limit cycles from 

three directions: the existence and non-existence of rational limit 

cycles, the number of rational limit cycles and the multiplicity of 

rational limit cycles. 

The rest of this paper is structured as follows. In Section 2 , we 

give some preliminaries, some of which concern whether a rational 

function is a rational limit cycle and some of which are useful tools 

to prove our theorems. In Section 3 , we consider the existence of 

nontrivial rational limit cycles and the degrees of A ( x ) and B ( x ) in 

system (1) , and the existence of two nontrivial rational limit cycles. 

In Section 4 , we prove that he multiplicity of nontrivial rational 

limit cycle is unbounded. All the results in Section 3 and 4 are 

different from that in the polynomial case. 

2. Preliminaries 

The following lemma gives the sufficient and necessary condi- 

tions that a rational function can be a periodic solution of system 

(1) . 

Lemma 2. The nonzero rational function y = 

q (x ) 
p(x ) 

is a periodic so- 

lution of system (1) if and only if all the following three conditions 

hold: 

(a) q (x ) = c 1 , where c 1 is a nonzero constant; 

(b) c 1 B (x ) + 

p(x ) p ′ (x ) 
c 1 

+ p(x ) A (x ) = 0 ; 

(c) p(0) = p(1) and p ( x ) has no zero in [0, 1] . 

Proof. If y = 

q (x ) 
p(x ) 

is a periodic solution of system (1) , then obvi- 

ously p ( x ) has no zero in [0, 1]. Denote by F (x, y ) = p(x ) y − q (x ) , 

then along the curve { F (x, y ) = 0 } , the derivative of F ( x, y ) in x is 

zero, in other words, 

d F 

d x 
= p ′ (x ) y − q ′ (x ) + p(x )(A (x ) y 2 + B (x ) y 3 ) = 0 . 

Notice that F ( x, y ) is irreducible, so there exists a polynomial k ( x, 

y ) so that 

p ′ (x ) y − q ′ (x ) + p(x )(A (x ) y 2 + B (x ) y 3 ) = k (x, y ) F (x, y ) . (2) 

The left-hand side of formula (2) is a polynomial of degree 3 in y 

and F ( x, y ) is a polynomial of degree 1 in y , so we can suppose that 

k (x, y ) = k 0 (x ) + k 1 (x ) y + k 2 (x ) y 2 , where k 0 , k 1 and k 2 are polyno- 

mials in x . Via Comparing the coefficients of y k , k = 0 , 1 , 2 , 3 , in 

formula (2) , we obtain 

(i ) −q ′ (x ) = −k 0 (x ) q (x ) ;
(ii ) p ′ (x ) = k 0 (x ) p(x ) − k 1 (x ) q (x ) ;
(iii ) p(x ) A (x ) = k 1 (x ) p(x ) − k 2 (x ) q (x ) ;
(i v ) p(x ) B (x ) = k 2 (x ) p(x ) . 

From (i), q ( x ) is a factor of q ′ ( x ), that is, q ( x )| q ′ ( x ). This fact implies 

that q ( x ) is a constant and we denote it by q (x ) = c 1 ∈ R . If c 1 = 

0 , then y = 

q (x ) 
p(x ) 

= 0 . This is impossible, so we have that c 1 � = 0 , 

the condition (a) holds. Furthermore, y = 

q (x ) 
p(x ) 

= 

c 1 
p(x ) 

is a periodic 

solution, thus p(0) = p(1) , the condition (c) holds. 

From (ii), k 1 (x ) = − p ′ (x ) 
c 1 

; from (iv), k 2 (x ) = B (x ) . Substituting 

them to (iii), we have 

c 1 B (x ) + 

p(x )(p ′ (x ) 

c 1 
+ p(x ) A (x ) = 0 . 

The condition (b) holds. 

On the contrary, if all the three conditions (a),(b),(c) hold, then 

one can easily check that the rational function y = 

c 1 
p(x ) 

is a peri- 

odic solution of system (1) . �

Since q (x ) = c 1 is a nonzero constant, without loss of generality, 

in the rest of this paper, we will suppose that q (x ) = 1 . To decide a 

periodic solution of system (1) is a hyperbolic limit cycle, we need 

the following lemma, whose proof can be find in [11] (Lemma 5). 

Lemma 3. Consider the differential equation d y 
d x 

= F(x, y ) , where 

F(x, y ) is a function of class C 2 in R 

2 . Assume that y = ϕ(x ) is a pe- 

riodic orbit of this equation, then it is a hyperbolic limit cycle if and 

only if D 1 (1) � = 0 , where 

D 1 (x ) = 

∫ x 

0 

∂F 

∂y 
(t , ϕ(t )) d t . 

We firstly use Lemma 3 to deal with polynomial limit cycles: 

Corollary 1. If y = c, c � = 0 , is a limit cycle of system (1) , then it must 

be a hyperbolic limit cycle. 

Proof. Since y = c is a solution of system (1) , by Lemma 2, we have 

that A (x ) = −cB (x ) and system (1) becomes 

d y 

d x 
= B (x ) y 2 (y − c) . 

If 
∫ 1 

0 B (x )d x � = 0 , then 

D 1 (1) = 

∫ 1 

0 

∂B (x ) y 2 (y − c) 

∂y 
(t, c) d t = c 2 

∫ 1 

0 

B (t)d t � = 0 . 

By Lemma 3 , the periodic solution y = c is a hyperbolic limit cycle. 

If 
∫ 1 

0 B (x )d x = 0 , then D 1 (1) = 0 , but now A ( x ) and B ( x ) sat- 

isfy the composition condition (see for example [3] ), all the solu- 

tions are periodic, so y = c is not a limit cycle. This case does not 

occur. �

Secondly we use Lemma 3 to deal with nontrivial rational limit 

cycles: 

Corollary 2. If y = 

1 
p(x ) 

is a periodic solution of system (1) , then it is 

a hyperbolic limit cycle if and only if 
∫ 1 

0 
B (x ) 

p 2 (x ) 
d x � = 0 . 

Proof. By direct calculations, we have 

D 1 (1) = 

∫ 1 

0 

∂A (x ) y 2 + B (x ) y 3 ) 

∂y 

(
t , 

1 

p(t ) 

)
d t = 

∫ 1 

0 

2 A (x ) p(x ) + 3 B (x ) 

p 2 (x ) 
d x. 

By Lemma 2, p(0) = p(1) and p(x ) A (x ) = −B (x ) − p(x ) p ′ (x ) , so 

D 1 (1) = 

∫ 1 

0 

B (x ) 

p 2 (x ) 
− 2 

p ′ (x ) 

p(x ) 
d x = 

∫ 1 

0 

B (x ) 

p 2 (x ) 
d x, 

which finishes the proof. �

The following well-known result of linear algebra will be used 

in Section 4 . 

Theorem 4. Let v 1 , v 2 , ���, v n be elements of a vectorial space E en- 

dowed with an inner product 〈 , 〉 . Then 
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