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a b s t r a c t 

We study the emergent dynamics of limit cycle oscillators coupled indirectly via a dynamic environment. 

We report the co–existence of in–phase oscillations and oscillation death in the parameter plane, which 

is observed for the first time in indirectly coupled systems. It is found that the emergent dynamics of 

this system crucially depend on both the decay parameter of the environment and the density of the 

mean–field coupling. Also, we found a distinct route to suppressed oscillation state, namely, amplitude 

death and oscillation death, from the oscillatory solutions. Our numerical results are consistent with the 

analytical results obtained from linear stability analysis and further corroborated by the experimental 

results obtained from the electronic circuit implementation of the system. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Models of coupled oscillators are not only the prototype of 

complex systems but also has been used to gain more understand- 

ing of these systems. The two most prominent emergent behavior 

of coupled oscillators are, synchronization [1] and oscillation sup- 

pression [2,3] . Synchronization is the adjustment of a rhythm of the 

oscillators due to coupling and has been a widely studied topic [1] . 

Oscillation suppression is classified into two classes, namely, am- 

plitude death(AD) and oscillation death(OD), due to their mani- 

festation and origin. AD is the stabilization of trivial steady state 

of uncoupled oscillators due to coupling [2] , however, in OD the 

emergent steady state break the inherent symmetry present in 

the oscillators due to the coupling term [3] . From an application 

point of view, AD has potential applications in the cases where 

suppression of unwanted oscillation is necessary, e.g., laser [4] , 

oceanography [5] , and neuronal systems [6] , whereas OD has ap- 

plications in an understanding of biological system including neu- 

ral networks [7] , genetic oscillators [8] and cell differentiation [9] . 

These two are structurally different phenomena but can simultane- 

ously occur in a coupled system. Over that past few years, several 

works have been devoted to study the transition from AD to OD in 

coupled oscillators for different coupling scheme, e.g. simple dif- 

fusive coupling [3] , mean-field diffusive coupling [10–13] , time de- 
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lay coupling [15] , conjugate coupling [14] , direct and indirect cou- 

pling [16,17] , repulsive coupling [18] and indirect coupling [19–21] . 

It has been found that in many physical, chemical and bio- 

logical systems, the components interact with each other indi- 

rectly through common environment and the direct interactions 

among the components are almost absent. For instance, the phe- 

nomenon of quorum sensing or cell-cell communication realizes 

when bacterial colony releases chemical signal molecules (called 

auto-inducers) into the environment. The interaction of cell and 

environment may occur through the diffusion and transport of 

chemical signal molecules across the cell membrane, which allow 

the bacteria to sense a critical cell mass and in response, to the 

activation of receptors on the cell membrane [22] . In the case of 

chemical oscillations, the catalyst loaded reactants in a medium 

exchange chemicals with the surrounding medium [23] . Similarly, 

an ensemble of cold atoms interacts through a coherent electro- 

magnetic field [24] and in case of neuronal oscillator indirect com- 

munication exist where concentrations of neurotransmitters re- 

leased by each cell stimulate collective rhythms in a population 

of circadian oscillation [25] . There are various studies which have 

been focused on the collective dynamics of these systems where 

the exchange of information among the systems is indirect [26–

38] . 

The coexistence of oscillatory solutions along with steady state 

solutions has been found in literature and also has a great sig- 

nificance in biological oscillators [39–41] . This type of bistability 

has also been observed in a theoretical model of chemical oscil- 

lators [42,43] . Also, in many physical systems, this coexistence of 
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in-phase oscillatory solutions and OD state has been found [44–

47] . Such coexisting steady state and in–phase oscillation found in 

chemical oscillators, laser systems as well as chaotic systems such 

as Lorenz, Rössler and Pikovsky-Rabinovich is due to the symme- 

try breaking and symmetry preserving nature of the coupling re- 

spectively. In this context, the coexistence of these two solutions is 

not observed in an indirectly coupled system of oscillators where 

direct interaction is absent [19] . Given the importance of indirect 

coupling, it is imperative to design a scheme of coupling where 

there is a possibility of an existence of this bistable state. 

In this work, we introduce a coupling scheme which is not only 

indirect but also allows the coexistence of in-phase oscillatory so- 

lutions and OD in a system of limit cycle oscillators. We have stud- 

ied the emergent states of Stuart-Landau oscillators and Van-der 

Pol oscillators for this coupling scheme. The outline of this paper 

is as follows: In Section 2 , we introduce our model of indirectly 

coupled oscillators and then discuss numerical as well as analyti- 

cal results obtained from linear stability analysis, for both Stuart- 

Landau and Van-der Pol oscillators. Next, in Section 3 we present 

the electronic circuit implementation of our model for Van-der Pol 

oscillators and demonstrate the different dynamical state of the in- 

directly coupled systems through experimental time series plot. Fi- 

nally, in Section 4 , we will discuss the results and present the con- 

clusions. 

2. Model of two indirectly coupled limit cycle oscillators 

We consider N identical two–dimensional limit cycle oscilla- 

tors which are indirectly coupled via a dynamic agent in a local 

medium/environment. The dynamics of this system is given by, 

˙ x i = f 1 (x i , y i ) + ε(s − x i ) , 

˙ y i = f 2 (x i , y i ) , 

˙ s = −γ s + ε(Q x − s ) , 

(1) 

where, i (= 1 , . . . , N) is the oscillator index. ( x i , y i ) are the state 

variables of the i th limit cycle oscillators whose time evolution 

is specified by the functions f 1 ( x i , y i ) and f 2 ( x i , y i ) respectively. ‘ s ’ 

is the state variable of the common environment of these oscil- 

lators. The dynamics of the environment is modeled by an over 

damped oscillator with damping co–efficient, γ . To remain active, 

state variable, s of the environment interacts with the x component 

of the limit cycle oscillators. ε is the coupling strength of diffusion 

for both, the oscillators and the local medium. x (= 

1 
N 

N ∑ 

i =1 

x i ) is the 

mean–field of the N oscillators and Q is the intensity of mean–

field interaction influencing the dynamics of the local medium. In 

this coupling scheme, interaction among limit cycle oscillators is 

through the dynamic agent s of the medium, which gets feedback 

from the diffusion of some intensity of the mean-field of state vari- 

able x . This makes the coupling or exchange of information among 

the oscillators indirect. 

Moreover, the state variable of oscillators, x and state variable of 

environment, s , represents common particle species that can freely 

diffuse in the system and allow individual oscillators to commu- 

nicate with each other [37,38] . The specific realizations of x and s 

depend on the context. In the BZ reaction, it represents chemical 

species that diffuse between auto-catalytic beads and similarly in 

metabolic oscillations, it represents common metabolites that dif- 

fuse between cells [38] . The analogy of this coupling scheme can 

also be found in [39] , where the molecules released from the cells 

are diffused in the local medium constitutes a mean–field which 

in turn effect the collective dynamics of the cells through indirect 

interactions. 

2.1. Stuart–Landau oscillators 

We first consider N identical indirectly coupled Stuart–Landau 

(SL) oscillators. The dynamics of the system for this coupling 

scheme can be written as, 

˙ x i = (1 − x 2 i − y 2 i ) x i − ωy i + ε(s − x i ) , 

˙ y i = (1 − x 2 i − y 2 i ) y i + ωx i 

˙ s = −γ s + ε(Q x − s ) , 

(2) 

where, i = 1 , ..., N is oscillator index. The frequency of the oscilla- 

tors is ω = 2 . 

We first consider the case for which N = 2 . From Eq. (2) , 

it is clear that for N = 2 , system has a trivial fixed point, 

which is the origin (0,0,0,0,0), and two additional coupling de- 

pendent nontrivial fixed points: (i) Inhomogeneous steady state 

(IHSS) (x �, y �, −x �, −y �, s �) where, x � = y �
(

−ε±
√ 

ε2 −4 ω 2 

2 ω 

)
, y � = √ 

ε−2 ω 2 ±
√ 

ε2 −4 ω 2 

2 ε and s � = 0 and (ii) Homogeneous steady states 

(HSS); ( x † , y † , x † , y † , s † ), where, x † = 

(
−ε′ ±

√ 

ε′ 2 −4 ω 2 

2 ω 

)
y † , y † = √ 

(ε′ −2 ω 2 ) ±
√ 

ε′ 2 −4 ω 2 

2 ε′ , s † = 

Qε
γ + ε x † and ε′ = 1 − Qε

ε+ γ . The stabilization 

of trivial fixed point (origin) lead to the AD state in the system, 

while stabilization of nontrivial fixed points lead to the OD state. 

To understand the different emergent dynamical states of the 

system theoretically, we first analyze the stability of the fixed 

points through linear stability analysis. For that, we calculate the 

eigenvalues of 5 × 5 Jacobian matrix, calculated at the fixed points. 

The characteristic equation of the system at the trivial fixed point 

(0, 0, 0, 0, 0), is given by, 

(λ2 + c 1 λ + c 0 )(λ
3 + d 2 λ

2 + d 1 λ + d 0 ) = 0 , (3) 

where, c 1 = ε − 2 , c 0 = 1 + ω 

2 − ε, d 2 = γ + 2 ε − 2 , d 1 = (1 − Q ) ε2 

+ (γ − 3) ε + (ω 

2 − 2 γ − 1) and d 0 = (Q − 1) ε2 + (ω 

2 − γ + 1) ε + 

γ (1 + ω 

2 ) . 

The stability of origin can be computed from the coefficients of 

the above characteristic equation by the method given in ref. [48] . 

The exact locus of Hopf bifurcation points HB1 and HB2, through 

which origin get stabilized, in the parameter plane is obtained by 

putting c 1 = 0 and d 1 d 2 − d 0 = 0 respectively, 

εHB 1 = 2 , 

γHB 2 = 

8 ε − 4 − ε2 (3 − Q ) + 

√ 

m 

2(ε − 2) 
, 

(4) 

with m = (1 + 2 Q + Q 

2 ) ε4 − (1 + Q )4 ε3 + 4 ε2 − 4 ω 

2 (ε − 2) 2 . The 

pitchfork bifurcation points PB1 and PB2, can also be obtained 

from Eq. (3) , by putting c 0 = 0 and d 0 = 0 respectively, 

εPB 1 = 1 + ω 

2 = ε∗, 

εPB 2 = 

(γ − ε∗) −
√ 

(ε∗ − γ ) 2 − 4 γ ε∗(Q − 1) 

2(Q − 1) 
. 

(5) 

The critical value of γ for which the origin stabilizes through Hopf 

bifurcation is γ HB 2 . Also, εPB 1 and εPB 2 are the critical value of ε at 

which pitchfork bifurcation occur from the origin. These two pitch- 

fork bifurcations give rise to IHSS and HSS solutions respectively. 

The stability of these states can be computed from the eigenvalues 

of the Jacobian matrices. The characteristic equation corresponding 

to the IHSS, (x �, y �, −x �, −y �, s �) is, 

(λ2 + c �1 λ + c �0 )(λ
3 + d �2 λ

2 + d �1 λ + d �0 ) = 0 , (6) 

where, c �
1 
=ε + 4 β− 2 , c �

0 
=1 + ω 

2 − 4 β + 3 β2 + ε(x �2 + 3 y �2 − 1) , 

d �
2 

= 4 β + γ + 2(ε− 1) , d �
1 

= 1− 4 β + 3 β2 + 4 γβ+ ε(5 x �2 + 7 y �2 ) + 

p 1 , d �
0 

= 3 γβ2 − 4 γβ − 4 εβ + 3 εβ2 + γ ε(x �2 + 3 y �2 ) + ε2 (x �2 + 

3 y �2 − Qx �2 − 3 Qy �2 ) + p 0 , β = x �2 + y �2 , p 1 = ε(γ − 3) + ε2 (1 −
Q ) + ω 

2 − 2 γ , p 0 = γ + ε(1 − γ ) + ε2 (Q − 1) + ω 

2 (γ + ε) . 



Download English Version:

https://daneshyari.com/en/article/8253725

Download Persian Version:

https://daneshyari.com/article/8253725

Daneshyari.com

https://daneshyari.com/en/article/8253725
https://daneshyari.com/article/8253725
https://daneshyari.com

