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a b s t r a c t 

We examine the Dow Jones Industrial Average index components with respect to the capital asset pricing 

model (CAPM), specifically its scaling properties in the sense of different investment horizons. To do so, 

we use the novel methods of fractal regressions based on the detrended cross-correlation analysis and 

the detrending moving-average cross-correlation analysis. We report three standard groups of stocks –

aggressive, defensive and market-following – which are rather uniformly represented. For most of the 

stocks, the β parameter of the CAPM does not vary significantly across scales. There are two groups of 

exceptions. One of aggressive stocks which are even more aggressive for short investment horizons. These 

do not provide portfolio diversification benefits but allow for high profits above the market returns and 

even more so for the short investment horizons. And the other group of more defensive stocks which 

become very defensive in the long term. These stocks do not deliver short term profits but can serve as 

strong risk diversifiers. Apart from these direct results, our analysis opens several interesting questions 

and future research directions, both technical and experimental, which we discuss in more detail. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The Global Financial Crisis and its aftermath have shown that 

the notion of systematic (and also systemic) risk is not vain. Dur- 

ing the critical periods, practically all stocks kept losing their value, 

and the losses and risk could not have been diversified away. Dat- 

ing back to Markowitz [1] , diversification, i.e. lowering the port- 

folio risk by its enlarging, is tightly connected to the correlation 

structure of the market. If the assets are all strongly correlated, 

they will rise and fall together. Only a single asset moving against 

the market can lower the portfolio risk markedly. Connection be- 

tween the market risk and individual assets’ risk is nicely captured 

by the capital asset pricing model (CAPM), which has become one 

of cornerstones of the modern financial economics since its intro- 

duction in the 1960s [2–4] . The model describes the relationship 

between an asset and market in a simple linear manner. Regardless 

its simplicity, the model has several intuitive but important impli- 

cations. The most important one from the portfolio construction 

perspective is the existence of the market (systematic) risk that 

cannot be diversified away. In words, as most assets are at least 

somehow connected to the global market movements, this princi- 

pal component cannot be gotten rid of as it is common to all said 

assets. Another appealing outcome of the model’s simplicity is that 
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it is described by only two parameters one of which – β – iden- 

tifies the asset as an aggressive one, a defensive one, or a market- 

following one. However, if the past decade has taught the financial 

theorist and practitioners anything, market participants can per- 

ceive an asset behavior differently. There are different types of in- 

vestors with different trading strategies and different investment 

horizons and it is hard to believe they all agree on risk specifics of 

a given asset as called for by the efficient market hypothesis [5,6] . 

Quite the contrary, it is more realistic to assume that the market 

participants differ as well as their expectations as asserted by the 

fractal market hypothesis [7,8] . Our main motivation is thus to in- 

spect the stock markets via the capital asset pricing model with 

a special focus on scale specifics of the model. To do so, we uti- 

lize the quite newly proposed regression frameworks build on the 

fractal methods, specifically the detrended cross-correlation anal- 

ysis and the detrending moving-average cross-correlation analysis. 

In addition, we provide a novel approach towards the statistical 

significance of the scale variability. 

The paper is organized as follows. The next section describes 

the capital asset pricing model in detail and focuses on the fractal 

methods and how to approach statistical inference in the CAPM 

setting. The following section introduces the analyzed data and 

explains the specific choices. The last section presents the re- 

sults, provides economic interpretation and sketches some further 

venues into the topic. 
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2. Methods 

2.1. Capital asset pricing model 

The capital asset pricing model (CAPM) is one of the important 

building blocks of the modern financial economics as it describes 

the relationship between risk and return in the rational equilib- 

rium market. Building on the Markowitz modern portfolio theory 

[1,9] , the CAPM was developed by several authors independently 

of one another [2–4] . For individual assets, the model is stated as 

E (R i ) = R f + βi (E (R m 

) − R f ) (1) 

where E (R i ) is the expected return of asset i, R f is the risk-free 

rate, and E (R m 

) is the expected market return. β i is the crucial 

parameter of the model and it can be interpreted as a sensitivity 

of the asset return to the market return (both cleared by the risk- 

free rate). With respect to Refs. [2–4] , it can be shown that 

βi = ρim 

σi 

σm 

= 

cov (R i , R m 

) 

var (R m 

) 
(2) 

where ρ im 

is the correlation between R i and R m 

, σ i is the standard 

deviation of R i , and σ m 

is the standard deviation of R m 

. Note that 

the representation of β i on the right-hand side of Eq. (2) is the 

same as the least squares estimator of the simple regression 

R i − R f = αi + βi (R m 

− R f ) + u i (3) 

where u i is the error term and αi is a deviation from the equilib- 

rium return. 1 The β parameter can be thus easily estimated using 

the least squares methodology. In general, β can attain any value 

but cases when β ≤ 0 are rare (assets moving against the market, 

or short positions). Apart from this unlikely case, there are three 

interesting cases: 

• 0 < β < 1: defensive assets, which move in the same direction 

as the market but have lower volatility 
• β = 1 : assets following the market, e.g. market-index-based as- 

sets, or strong contributors to a market index 
• β > 1: aggressive assets, which move in the same direction as 

the market but with higher volatility 

The definition of β and the CAPM construction imply that the 

market return R m 

and error term u in Eq. (3) are uncorrelated. 

This allows to split the asset variance (risk) σ 2 
i 

into two orthog- 

onal components as 

σ 2 
i = β2 

i σ
2 
m 

+ σ 2 
u i 

(4) 

where σ 2 
m 

is the market variance and σ 2 
u i 

is the error term variance 

[10] . The component β2 
i 
σ 2 

m 

is called the systematic risk associated 

with the market and it cannot be eliminated (i.e. by diversifica- 

tion). The error term variance is usually referred to as the idiosyn- 

cratic risk (or specific risk or unsystematic risk) and this one can 

be eliminated (or at least mitigated). High β assets can thus re- 

turn high profits in the growing market but they do not contribute 

to risk optimization. Therefore, a high β portfolio is possibly very 

profitable but also very risky. Low β assets thus help diversifying 

the risk. 

The capital asset pricing model is connected to an understand- 

ing of a market as an efficient one with respect to the efficient 

market hypothesis (EMH) [5,6,11–14] , specifically to one of its as- 

sumptions that the investors are homogeneous in their expecta- 

tions and have a common investment horizon [15] . However, ob- 

serving reality suggests that investors are far from homogeneous 

1 The α parameter can be used for investment decisions as α > 0 suggests over- 

pricing of the asset and α < 0 suggest underpricing of the asset. However, we focus 

primarily on the β parameter here and leave possible α discussions for future re- 

search. 

and they differ in their investment horizons, ranging from algo- 

rithmic and noise trading (with very short horizons in a span of 

second fractions) to pension funds (with long investment horizons 

of several years or even decades). Specifically, we want to exam- 

ine whether an asset can be seen in a different perspective (in the 

CAPM sense) by a short-term investor and a long-term investor, 

i.e. whether the asset βs can be different for different invest- 

ment horizons. For this purpose, we utilize the regression frame- 

works build with scaling and fractality in mind – fractal regres- 

sions based on the detrended cross-correlation analysis and the 

detrending moving-average cross-correlation analysis. 

2.2. Fractal regressions 

The capital asset pricing model is based on a bivariate relation- 

ship between an asset’s return (corrected by the risk-free rate) an 

a market return (also corrected by the risk-free rate). The model 

can be thus ideally studied by quite recently proposed regression 

frameworks based on the detrended fluctuation analysis (DFA) and 

detrending moving average (DMA) procedures [16,17] . Here, the 

methods are not only useful due to their robustness to persistence, 

short-range correlations and heavy tails [18–20] , but specifically for 

their ability to study the relationship between series at different 

scales so that we can distinguish between short-term and long- 

term investment horizons. This leads to possible findings such that 

a specific stock is considered to be an aggressive investment for 

short-term investors but a defensive (safe) investment for long- 

term investors. Such results would support claims of the fractal 

markets hypothesis (FMH) [7,8,21–23] as opposed to the efficient 

market hypothesis (EMH) [5,6,11–14] , which assumes that all in- 

vestors agree on the riskiness of a specific asset. 

The two fractal regression frameworks are based on the meth- 

ods usually used for detecting fractal structure and long-range 

dependence properties of analyzed series – specifically the de- 

trended fluctuation analysis (DFA) [24] and the detrending mov- 

ing average (DMA) [25,26] . Both methods have been generalized 

for analysis of bivariate properties of the series which has given 

rise to the detrended cross-correlation analysis (DCCA) [27–29] and 

the detrending moving-average cross-correlation analysis (DMCA) 

[30,31] . Combination of DFA and DCCA allowed for an introduction 

of the DCCA-based correlation coefficient which describes corre- 

lations between series at different scales [32] . In the same logic, 

DMA and DMCA have been combined to form the DMCA-based 

correlation coefficient [33] , which surpasses the original DCCA- 

based method under various specifications of long-range depen- 

dence [34] . These scale-specific correlation coefficients have been 

extensively used in empirical studies across disciplines [28,35–46] . 

The regression frameworks are only a step away from the correla- 

tion analysis. 

The DCCA and DMCA-based correlation coefficients are based 

on a simple idea of substituting the covariance and variances (stan- 

dard deviations) in the definition of correlation coefficient with 

the scale-specific covariances and variances obtained during the 

DFA/DCCA and DMA/DMCA procedures. Without a need to even- 

tually arrive at the Hurst exponent given by DFA and DMA, we 

can use the fluctuation functions obtained during the procedures. 

Specifically for the DFA procedure, we select the scale s and split 

the profile series (integrated demeaned original series) into boxes 

of given length. 2 In each box, a polynomial trend (usually linear 

as in our application) is fitted, residuals are obtained and mean 

squared error is calculated. The mean squared errors are then av- 

eraged over all boxes of size s and to get F 2 
X,DF A 

(s ) . For the bivariate 

2 If the series is not divisible by s , we divide the series into boxes from the begin- 

ning and from the end, i.e. obtained twice as many boxes compared to the divisible 

case. 
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