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We study an effect of random disturbances on the discrete two-dimensional Rulkov neuron model. We 

show that close to the Neimark–Sacker bifurcation, the increasing noise can cause the transition from 

the noisy quiescence with small-amplitude oscillations near the stable equilibria to the stochastic burst- 

ing with large-amplitude spikes. Mean values and variations of the interspike intervals are studied in 

dependence of the noise intensity. To study the noise-induced bursting, the analytical approach based 

on the stochastic sensitivity functions technique and confidence ellipses method is applied. On the basis 

of the largest Lyapunov exponents, we show how the noise-induced transition from the quiescence to 

stochastic bursting regime is accompanied by the transformation of dynamics from regular to chaotic. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the actively developing field of research related to biological 

modeling, a special role is played by the study of dynamic models 

of the neuronal activity. These models reflect a wide diversity of 

the regimes of the neuronal activity, and therefore possess complex 

excitable attractors and exhibit unexpected nonlinear phenomena 

[1–3] . The continuous-time models, such as Fitzhugh–Nagumo [4–

8] , Hodgkin–Huxley [9–13] , Morris–Lecar [14–17] and Hindmarsh–

Rose [18–23] models, were extensively studied by many authors 

in both deterministic and stochastic cases. While the theory of 

continuous-time neuron models using differential equations has 

been widely developed, less attention has been devoted to the 

study of map-based discrete-time models [24] . 

The discrete-time Rulkov system [25] was one of the first phe- 

nomenological models which demonstrate basic types of the neu- 

ral activity, such as the quiescence, the tonic spiking and bursting. 

Mathematically, the two-dimensional Rulkov model exhibits vari- 

ous bifurcations and attractors [26,27] . This model is actively used 

in the study of the dynamics of neural networks [28–31] . Even in 

the one-dimensional case, the Rulkov model exhibits interesting 

phenomena under the influence of random disturbances [32] . 

The aim of the present paper is to study how the two- 

dimensional Rulkov model responds to random perturbations. Our 

analysis is focused on the parametric zone near the Neimark–

Sacker bifurcation. 
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An analysis of the stochastic phenomena in the map-based 

dynamical systems attracts attention of many researchers (see, 

e.g. [33–36] ). However, until now the main research method is the 

direct numerical simulation of the random trajectories that is time- 

consuming in the parametric study. A rigorous theoretical descrip- 

tion of the dynamics of probabilistic distributions of solutions of 

the stochastic discrete systems is given by the Perron–Frobenius 

equation [36] . An analytical solution of such functional equations 

is available only in the exceptional cases. A constructive method 

of the approximation of the probabilistic distributions based on 

the stochastic sensitivity functions (SSF) technique has been pro- 

posed in [37] . In the present paper, we apply this technique to 

the analysis of the noise-induced bursting in the two-dimensional 

Rulkov model. A short overview of the stochastic sensitivity func- 

tion technique and method of the confidence ellipses is given in 

the Appendix . 

The present paper is organized as follows. 

In Section 2 , we give a short summary of dynamical regimes for 

the deterministic 2D Rulkov model in the zone of the Neimark–

Sacker bifurcation connected with the loss of stability of the equi- 

librium and birth of the stable invariant curve. In the zone of sta- 

ble equilibria, sub- and superthreshold regimes are discussed. In 

the zone of the stable closed invariant curves, a phenomenon of 

the Canard explosion is illustrated. 

Section 3 is devoted to the study of the noise-induced gener- 

ation of the stochastic bursting in the zone where the initial de- 

terministic model has the stable equilibrium as a single attractor. 

We show how under increasing noise the system transforms from 

the noisy quiescence with the small-amplitude stochastic oscilla- 
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Fig. 1. Bifurcation diagram of the deterministic system (1) with σ = β = 0 . 005 . Enlarged fragments are shown in the bottom panel. 

tions to the bursting with large-amplitude stochastic spikes. Here, 

for the data of the direct numerical simulations, statistics of inter- 

spike intervals are analyzed. 

In Section 4 , for the analysis of the geometric probabilistic 

mechanisms of the noise-induced generation of the bursting, the 

stochastic sensitivity function technique and the method of the 

confidence ellipses is used. We show that the onset of the burst- 

ing in the case of stable equilibria can be predicted by the analysis 

of the mutual arrangement of the confidence ellipses and sub- and 

superthreshold zones. In Section 5 , using largest Lyapunov expo- 

nents, we show that the noise-induced transition from the quies- 

cence to stochastic bursting regime is accompanied by the trans- 

formation of dynamics from regular to chaotic. 

2. Deterministic Rulkov model 

Consider the two-dimensional Rulkov model { 

x t+1 = 

α

1 + x t 2 
+ y t 

y t+1 = y t − σ x t − β
, (1) 

where x and y are fast and slow variables, respectively, and the 

parameters α, σ and β are positive. In what follows, we will fix 

σ = β = 0 . 005 and study a behavior of this system in dependence 

on the parameter α. 

The Rulkov model (1) has a unique equilibrium M with coordi- 

nates x̄ = −1 , ȳ = −1 − α
2 . For this equilibrium, the Jacobi matrix 

is 

J = 

( α

2 

1 

−0 . 005 1 

)
. 

The equilibrium M is stable on the interval 0 < α < 1.99. The pa- 

rameter value α∗ = 1 . 99 corresponds to the point of the Neimark–

Sacker bifurcation with the birth of a closed invariant curve. In 

Fig. 1 , the bifurcation diagram of the deterministic model is pre- 

sented. Here, x - and y -coordinates of attractors are plotted. 

The Fig. 2 shows the phase portraits of the deterministic sys- 

tem (1) for the α = 1 . 9 and α = 1 . 98 in the zone of stable equi- 

libria. As can be seen, if the deviation of the starting point from 

the equilibrium is small, then the trajectory quickly relaxes to this 

equilibrium, and a subthreshold response is observed. If the initial 

deviations is larger than some threshold, the deterministic system 

exhibits large-amplitude loop before it returns to the small vicinity 

of the equilibrium and asymptotically tends to M . In this case, the 

system exhibits a superthreshold response, and a phenomenon of 

the firing a spike occurs. 

Closed invariant curves are shown in Fig. 3 for different val- 

ues of the parameter α > α∗. As can be seen, a size of these closed 

curves increases when α goes away from the bifurcation point α∗. 

Note that near α = 1 . 995 , a sharp jump of the amplitude values 

is observed. Such behavior is known as Canard explosion [26] . In 

the zone of the Canard explosion, both amplitude and the form of 

these closed invariant curves significantly change. In this regime, 

system (1) demonstrates a tonic spiking. 

In the present paper, we focus on the parameter zone α < α∗

and study a response of the equilibria of the Rulkov model to the 

stochastic forcing. 

3. Stochastic excitability of the equilibrium 

Consider the stochastically forced two-dimensional Rulkov 

model { 

x t+1 = 

α

1 + x t 2 
+ y t + ε 1 ξ1 ,t 

y t+1 = y t − σ x t − β + ε 2 ξ2 ,t 

, (2) 

where ξ 1, t , ξ 2, t are uncorrelated Gaussian random processes with 

parameters E(ξ1 ,t ) = E(ξ2 ,t ) = 0 , E( ξ 2 
1 ,t ) = E( ξ 2 

2 ,t ) = 1 , and ε1 , 

ε2 are the noise intensities. In what follows, we put ε 1 = ε 2 = ε. 

Under the influence of random disturbances, solutions of the 

stochastic system (2) leave the stable equilibrium M and form a 

regime of stochastic oscillations. For weak noise, random trajec- 

tories are localized near M , and the system (2) exhibits small- 

amplitude stochastic oscillations (see solutions of system (2) with 

α = 1 . 9 , ε = 0 . 0 0 05 shown by red in Fig. 4 (a) and (b). 

For larger noise intensities, the solution of system (2) can fall 

into the superthreshold zone, and as a result the large-amplitude 

spike is observed. So, the system exhibits the intermittency of the 

small- and large-amplitude oscillations. This regime can be in- 

terpreted as the noise-induced bursting. This type of the behav- 

ior is illustrated in Fig. 4 (a) and (b) where solutions of system 

(2) with α = 1 . 9 , ε = 0 . 0 0 08 are shown by blue color. Note that 

these noise-induced large-amplitude loops are similar in shape to 

Canard cycles of the deterministic system (compare Figs. 4 (a) and 

3 ). 

Such changes in dynamics of system (2) lead to the deformation 

of the probability density function of random states. In Fig. 4 (c), 

for two values of the noise intensity considered above, plots of the 

probability density function ρ( x ) are shown. For weak noise ( ε = 
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