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In this paper we investigate the nonlinear dynamics of the Ehrhard–Müller system, which is modeled 

by a set of three-parameter, three autonomous first-order nonlinear ordinary differential equations. More 

specifically, here we report on numerically computed parameter plane diagrams for this three-parameter 

system. The dynamical behavior of each point, in each parameter plane, was characterized by using Lya- 

punov exponents spectra, or independently by counting the number of local maxima of one of the vari- 

ables, in one complete trajectory in the phase-space. Each of these diagrams indicates parameter values 

for which chaos or periodicity may be found. In other words, each of these diagrams displays delim- 

ited regions of both behaviors, chaos and periodicity. We show that these parameter planes contain self- 

organized typical periodic structures embedded in a chaotic region. We also show that multistability is 

present in the Ehrhard–Müller system. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Our motivation in the present work is based on results recently 

reported by Park and co-workers [1] , who have investigated the 

Ehrhard–Müller system modeled by 

˙ x = σ (y − x ) , 

˙ y = rx − xz − y + c, 

˙ z = xy − z, (1) 

where x, y , and z are dynamical variables, and σ , r , and c are pa- 

rameters that control the dynamics of the system. The nonlinear 

set of differential equations in (1) was proposed by Ehrhard and 

Müller [2] to model thermal convection in a single-phase loop with 

nonsymmetric heating, a more general case than that modeled by 

the Lorenz system [3] 

˙ x = σ (y − x ) , 

˙ y = rx − xz − y, 

˙ z = xy − bz. (2) 

By comparing Eqs. (1) and (2) , we see that the Ehrhard–Müller sys- 

tem may be thought of as a b = 1 Lorenz system, externally excited 

by a constant forcing c . 

∗ Corresponding author. 

E-mail addresses: aggsdpz@gmail.com (A. da Silva), paulo.rech@udesc.br (P.C. 

Rech). 

Some numerical and analytical results were reported in [1] . 

Equilibrium points were computed, and the related stability anal- 

ysis was made. Stability regions of equilibrium points were delim- 

ited in the ( r, c ) parameter plane, separated by curves obtained an- 

alytically for a fixed parameter σ = 15 . A numerically computed 

( r, c ) isoperiodic diagram was reported, obtained by counting on a 

grid of equally spaced points, the number of local maxima of the z 

variable, in one complete trajectory in the phase-space. Addition- 

ally, some bifurcation diagrams, attractors in the phase-space, and 

Lyapunov exponents plots were reported in [1] . 

In this paper we report on parameter plane plots for the 

three-parameter, three-dimensional nonlinear dynamical system 

modeled by Eq. (1) , considering all three pairs of parameters, 

namely ( r, c ), ( r, σ ), and ( c, σ ). Such diagrams are important 

because they may be interpreted as cross sections of the ( r, c, σ ) 

three-dimensional parameter-space of the Ehrhard–Müller system. 

In addition, parameter plane plots allow us to observe regular 

(periodic or quasiperiodic) and chaotic orbits on continuous sets of 

parameters. This knowledge of the organization of chaos and reg- 

ularity in parameter planes may be useful to choose suitable paths 

in the parameter-space. For instance, by making appropriate modi- 

fications in parameters, we can travel over domains where the sys- 

tem is always chaotic, which is interesting for practical applications 

involving for example chaos control, chaotic secure communication 

and chaotic synchronization. More specifically, in this paper we 

perform a numerical investigation involving the delimitation of 

stability domains in all three parameter planes of the model (1) , 

to gain information about regions of chaotic and regular behaviors, 
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Fig. 1. (a) and (d) Global view of the ( r, c ) parameter plane for system (1) , 0 ≤ r ≤ 50 0 0 and 0 ≤ c ≤ 70 0 0. (b) and (e) Global view of the ( r, σ ) parameter plane for system (1) , 

10 0 0 ≤ r ≤ 80 0 0 and 0 ≤σ ≤ 100. (c) and (f) Global view of the ( c, σ ) parameter plane for system (1) , 0 ≤ c ≤ 50 0 0 and 0 ≤σ ≤ 100. In diagrams (a)-(c), color is related to the 

magnitude of the largest Lyapunov exponent, while in diagrams (d)-(f) number indicates period (see text). 

as two of the three parameters in Eq. (1) are simultaneously 

varied. 

The paper is organized as follows. In Section 2 examples of 

the parameter planes are presented and interpreted, together with 

other numerical results involving conventional bifurcation dia- 

grams, trajectories in the phase-space (attractors), and basins of 

attraction. Finally, the paper is summarized in Section 3 . 

2. Some parameter planes of the Ehrhard–Müller system 

This section is dedicated to investigate examples of the three 

different parameter plane diagrams of the model (1) , therefore 

considering all possible combinations of two parameters in a 

total of three. Each diagram was obtained in a grid of 10 3 × 10 3 

equally spaced points, by using one of two different methods, to 

characterize the dynamical behavior of each point in the respec- 

tive parameter plane. One method considers the largest Lyapunov 

exponent (LLE), calculated using the Wolf algorithm [4] , as the 

indicator of periodicity or chaos, while the other method considers 

the number of local maxima of one of the dynamical variables in 

one complete trajectory in the phase-space, a number that from 

here on we call period. Except for the two varying parameters in 

each plot, the other parameter in Eq. (1) was kept fixed as σ = 15 , 

r = 30 0 0 , or c = 20 0 0 , as the case. Regardless of the choice of 

the two varying parameters, system (1) was integrated by using 

a fourth order Runge–Kutta algorithm, with a fixed time step size 

equal to 10 −4 , being dropped the first 5 × 10 5 integration steps, re- 

garded as a transient. Numerical Integrations were realized starting 

at the lower value of the two involved parameters, from the initial 

condition P 0 = (x 0 , y 0 , z 0 ) = (14 , 0 . 5 , 10 0 0) . To begin integrations 

for each incremented pair of parameters, was used the last value 

of P = (x, y, z) , obtained with the anterior value of the pair of pa- 

rameters, as the initial condition for the newly incremented pair. 

In other words, the attractor was followed whenever the param- 

eters were changed, when performing the numerical integration 

of system (1) . With regard to the method that considers the LLE, 

for the computation of the average involved in the calculation of 

each one of the 1 × 10 6 LLE, we consider the 5 × 10 5 integration 

steps after the transient. Same number of integration steps was 

considered to determine the 1 × 10 6 period values, in the case of 

the other method. Here we choose the variable x to count the 

number of local maxima, calling this number (the period) x m 

. 

A global view of the ( r, c ), ( r, σ ), and ( c, σ ) parameter planes is 

shown respectively in diagrams (a) and (d), (b) and (e), and (c) and 

(f), of Fig. 1 . Color in diagrams (a)–(c) is related to the magnitude 

of the respective LLE. A positive LLE is indicated by a continuously 

changing yellow to red color, a negative LLE is indicated by a con- 

tinuously changing white to black color, and the black color itself 
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