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a b s t r a c t 

In this paper, an efficient numerical method is introduced for solving the fractional (Caputo sense) Fisher 

equation. This equation presents the problem of biological invasion and occurs, e.g., in ecology, phys- 

iology, and in general phase transition problems and others. We use the spectral collocation method 

which is based upon Chebyshev approximations. The properties of Chebyshev polynomials are utilized 

to reduce the proposed problem to a system of ODEs, which is solved by using finite difference method 

(FDM). Some theorems about the convergence analysis are stated. A numerical simulation and a compar- 

ison with the previous work are presented. We can apply the proposed method to solve other problems 

in engineering and physics. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Fractional derivatives in the sense of the Liouville–Caputo and 

Riemann–Liouville definitions play an important role in many ap- 

plications, such as engineering, physical, economic, and biologi- 

cal applications [1–3] . These types with respect to the power law 

function kernel. Recently, Yang et al. [4] proposed a new defini- 

tion of the local fractional derivative and they applied it on a vari- 

ous problems in engineering [5] . More recently, Caputo and Fab- 

rizio [6] suggested a new fractional derivative based on the ex- 

ponential decay law which is a generalized power law function 

[7–10] . Abdon and Dumitru introduced a fractional derivative with 

non-local kernel based on the Mittag–Leffler function and permit 

to describe complex physical problems that follows at the same 

time the power and exponential decay law [11–13] . So, recently a 

considerable attention has been given to the solutions of fractional 

differential equations (FDEs) due to their frequent appearance in 

various applications in fluid mechanics and viscoelasticity [14,15] . 
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Most FDEs do not have exact solutions, so approximate and numer- 

ical techniques must be used [16,17] . 

Definition 1. The Caputo fractional derivative operator D 

ν of order 

ν is defined in the following form: 

D 

νϕ(x ) = 

1 

�(m − ν) 

∫ x 

0 

ϕ 

(m ) (τ ) 

(x − τ ) ν−m +1 
dτ, 

ν > 0 , m − 1 < ν ≤ m, m ∈ N , x > 0 . (1) 

For more details on fractional derivatives definitions and its prop- 

erties see [18] . 

At the last decade, the spectral methods for solving fractional 

differential equations (FDEs) have attracted the attention of many 

researchers. Li and Xu [19] developed a hybrid scheme and a time- 

space spectral method to solve time-fractional diffusion problem; 

Khader [20] presented a Chebyshev collocation method for solving 

the space-fractional diffusion equation; while Piret and Hanert de- 

veloped a radial basis function method for studying fractional dif- 

fusion equations [21] . Also, the Legendre spectral method [22] is 

used to solve the non-linear system of fractional diffusion equa- 

tions; and an adaptive pseudo spectral method [23] . Also, Khader 

[24] used the generalized Laguerre spectral algorithms to solve the 

linear fractional Klein–Gordon equation. In all these methods the 
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polynomial bases have been used in all spectrum methods. But re- 

cently, Zayernouri et al. used the discontinuous spectral element 

methods to solve the time-and space-fractional advection equa- 

tions [25] and the fractional delay equations [26] . Spectral collo- 

cation method (SCM) is a general approximate analytical method 

which is used to get the solutions for some of nonlinear differ- 

ential equations. SCM has some advantages for handling this class 

of problems in which the Chebyshev coefficients for the solution 

can be exist very easily after using the numerical programs. For 

this reason, this method is much faster than the other methods. 

Chebyshev polynomials are well known family of orthogonal poly- 

nomials on the interval [ −1 , 1] that have many applications. They 

are widely used because of their good properties in the approxi- 

mation of functions. 

The main goal in this article is devoted to study the numeri- 

cal solution for the following general form of nonlinear fractional 

differential equation: 

u t (x, t) = D 

αu + N(u ) , 0 < x < 1 , 0 ≤ t ≤ T , (2) 

where N ( u ) represents the nonlinear term, and the parameter 

0 < α ≤ 2 refers to the Caputo fractional order of spatial derivatives. 

Assume that the following initial and boundary conditions 

u (x, 0) = f (x ) , 0 < x < 1 , (3) 

u (0 , t) = g 1 (t ) , u (1 , t ) = g 2 (t) . (4) 

In our study, we consider the following two cases which de- 

pend on the nonlinear term N ( u ): 

Nonlinear fractional Fisher equation (NFFE): 

In this case, the nonlinear term N ( u ) is taken as N(u ) = μu (1 −
u ) , μ ∈ R and the Eq. (2) is called nonlinear fractional Fisher equa- 

tion. This equation is introduced by Fisher [27] to describe the ki- 

netic advancing rate of an advantageous gene. In a large number 

of biological and chemical phenomena, the reaction term is repre- 

sented by μu (1 − u ) , where μ> 0 and may be a function in the 

space variable. Eq. (2) represents the evolution of the population 

due to the two competing physical processes and changes of in- 

teraction of diffusion and nonlinear reaction can be observed. This 

equation arises in heat and mass transfer, biology, and ecology. 

Nonlinear generalized fractional Fisher equation (NGFFE): 

In this case, the nonlinear term N ( u ) is taken as N(u ) = u (1 −
u )(u − β) , 0 < β < 1 and the Eq. (2) is called nonlinear general- 

ized fractional Fisher equation [28] . This type of equations has 

travelling wave fronts which appears in the understanding of phys- 

ical, chemical, and biological phenomena. The wave of advance of 

advantageous genes in the context of population dynamics is pro- 

posed in [28] to describe the spatial spread of an advantageous 

allele and explored its travelling wave solutions. Also these equa- 

tions occur, e.g., in ecology, physiology, and in general phase tran- 

sition problems and others. In case of favourable environmental 

conditions, the alien population may begin to grow and spread 

over the area and thus the local initial structural perturbation of 

the native biological community may lead to large-scale dramatic 

changes in the community structure [29] . 

The well-known Fisher’s equation combines diffusion with lo- 

gistic nonlinearity. Fisher proposed Eq. (1) as a model for the prop- 

agation of a mutant gene, with u denoting the density of an advan- 

tageous. This equation is encountered in chemical kinetics [30] and 

population dynamics which includes problems such as nonlinear 

evolution of a population in a one-dimensional habitat, neutron 

population in a nuclear reaction. Moreover, the same equation 

occurs in logistic population growth models [31] and branching 

Brownian motion processes. 

The basic aim of this work is to apply the Chebyshev colloca- 

tion method with the help of finite difference method to discretize 

the proposed problem (2) , greatly simplify this problem to nonlin- 

ear systems of algebraic equations which will be solved by using 

Newton iteration method. 

2. Procedure of solution 

2.1. An approximate formula for fractional derivatives 

Chebyshev polynomials are a family of orthogonal polynomials 

on the interval [ −1 , 1] and can be determined with the aid of the 

following recurrence formula [32] : 

T n +1 (z) = 2 zT n (z) − T n −1 (z) , 

T 0 (z) = 1 , T 1 (z) = z, n = 1 , 2 , . . . . (5) 

In order to use these polynomials on the interval [0,1] we define 

the so called shifted Chebyshev polynomials by introducing the 

change of variable z = 2 t − 1 . The shifted Chebyshev polynomials 

are defined as T̄ n (t) = T n (2 t − 1) = T 2 n ( 
√ 

t ) . The analytic form for 

T̄ n (t) of degree n is given by 

T̄ n (t) = n 

n ∑ 

k =0 

(−1) n −k 2 

2 k (n + k − 1)! 

(2 k )! (n − k )! 
t k , n = 2 , 3 , . . . . (6) 

The function �( t ) ∈ L 2 [0, 1] can be expressed as a linear combina- 

tion of T̄ n (t) as 

�(t) = 

∞ ∑ 

i =0 

a i T̄ i (t) , (7) 

where the coefficients a i are given by 

a i = 

ρ

π

∫ 1 

0 

�(t) T̄ i (t) √ 

1 − t 2 
dt, 

ρ = 1 if i = 0 , ρ = 2 if i = 1 , 2 , . . . . (8) 

We take the first (m + 1) -terms of the series (7) to obtain the fol- 

lowing approximation form 

�m 

(t) = 

m ∑ 

i =0 

a i T̄ i (t) . (9) 

Theorem 1. (Chebyshev truncation theorem) [32] If we approximate 

the function �( t ) in the following form 

�m 

(t) = 

m ∑ 

k =0 

a k T k (t) , (10) 

then the error in this approximation is given by 

E T (m ) ≡ | �(t) − �m 

(t) | ≤
∞ ∑ 

k = m +1 

| a k | , ∀ �(t) , m, t ∈ [ −1 , 1] . 

(11) 

The main approximate formula of D 

ν�m 

( t ) is given in the following 

theorem. 

Theorem 2. [33] Suppose that we approximate the function �( t ) in 

the form (9) then D 

ν ( �m 

( t )) can be defined as 

D 

ν (�m 

(t)) = 

m ∑ 

i = 	 ν
 

i −	 ν
 ∑ 

k =0 

a i ϒ
(ν) 
i, k 

t i −k −ν, 

ϒ(ν) 
i, k 

= (−1) i −k 2 

2 k i (i + k − 1)!�(k + 1) 

( i − k )! (2 k )! �(k + 1 − ν) 
. (12) 

Theorem 3. [33] The D 

ν ( ̄T i (t)) can be expressed as a linear combi- 

nation of the T̄ i (t) in the following form 

D 

ν ( ̄T i (t)) = 

i ∑ 

k = 	 ν
 

k −	 ν
 ∑ 

j=0 

�i, j,k T̄ j (t) , (13) 
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