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a b s t r a c t 

A new theory for characterization of chaos is the basis for a chaos approach in Econophysics. Distinct pe- 

riods of Dow Jone Index are the objects of study in the reconstruction scheme. They include the Economic 

Crashes of 1929 and 1987. The computational routines analyze the time series of stock market indices in 

the Algebraic Computational environment. The method developed distinguishes between chaos and ran- 

domness from real systems. This paper presents conclusive results about the dynamic characteristic of 

Dow Jones Index evolution. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Nowadays it is reasonable to admit that Econophysics presents 

significant contributions to Financial Economics. Recent works 

have been giving significant contributions to literature in this in- 

terdisciplinary area of knowledge [1–3] . In the understanding of 

stock price and return variations, the power-law distributions lead 

to a characterization for the occurrence of extreme values. Prac- 

tical implementations, the identification of a critical exponent, the 

assumptions about volatility, long-term perspectives, the prediction 

of financial crashes – and their possible management – play a valu- 

able role even in trading rooms [4–7] . Another branch of study for 

the financial markets is the chaos approach. However, in this pro- 

posal, it is necessary to distinguish between chaotic time evolu- 

tion and a random process [8] . Fortunately, there is a new method 

which characterizes the dynamics from a time series in the recon- 

struction’s scheme. It provides alternatives to Lyapunov exponents 

and leaves signatures of chaos or randomness in diagrams [9] . 

One can consider the analysis of time series – from real sys- 

tems, in terms of nonlinear dynamics – as the most direct con- 

nection between chaos theory and the real world [10] . The Al- 

gebraic Computation is so convenient in this line of research. In 

fact, the predictability for chaotic time series has been applying 

in this computation environment successfully [11–14] . This paper 

looks at the ordered set of Dow Jones Index from this methodol- 

ogy. Both dynamic characterization and forecast are the means for 

extracting information of the stock market’s time series [15,16] . The 
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next section explains the theoretical basis of this work and revis- 

its our theory for a new characterization of chaos [9] . It describes 

the forecast’s theory, the graphical representations of the dynamics 

and the new quantifier of chaos employed. Routines, computational 

procedures and their results for the stock market are the content 

of the third part of this article. Finally, the fourth section presents 

the discussions about the results obtained. 

2. Forecasting and dynamic characterization revisited 

A convenient methodology for predicting an observable has 

support on the theorems proved by Takens [17] . If a Eu- 

clidean space has dimension d E = 2 m + 1 , then a compact man- 

ifold of dimension m can be embedded in this space [18] . For 

this purpose, it suffices to collect elements of a time series 

{ X ( 0 ) , X ( �θ) , . . . , X ( ( N − 1 ) �θ) } with a delay time T . They will 

be components of a state vector | ψ〉 into a d E -dimensional Eu- 

clidean space which reconstructs the original phase space – that is 

unknown, by definition [10,19,20] . Then the predictor P τ ( | ψ ( t ) 〉 ) 
approaches well the observable X ( t + τ�θ ) from a vector corre- 

sponding to the past time t . In this modeling, the time interval 

between two observables is �θ . The integer parameter τ specifies 

the prediction time τ�θ . 

| ψ ( t ) 〉 . = 

⎡ 

⎢ ⎢ ⎣ 

X ( d E T �θ ) 
. . . 

X ( 2 T �θ ) 
X ( T �θ ) 

⎤ 

⎥ ⎥ ⎦ 

(1) 

X ( t + τ�θ ) ∼= 

P τ ( | ψ ( t ) 〉 ) (2) 

The global approach technique employs the least squares 

method for determining the parameters of the predictor. There is a 
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mathematical convenience in the minimization process if the pre- 

dictive function is linear in the adjustment parameters [12] . In this 

work, the reconstructed space has four dimensions with the linear 

functional form 

P τ ( X 1 , X 2 , X 3 , X 4 ) = a 1 X 1 + a 2 X 2 + a 3 X 3 + a 4 X 4 

+ a 5 ln 

(
1 + 

1 

10 

cos ( X 1 ) 

)
+ a 6 ln 

(
1 + 

1 

10 

cos ( X 2 ) 

)
+ a 7 ln 

(
1 + 

1 

10 

cos ( X 3 ) 

)
+ a 8 ln 

(
1 + 

1 

10 

cos ( X 4 ) 

)
+ a 9 ln 

(
1 + 

1 

10 

sin ( X 1 ) 

)
+ a 10 ln 

(
1 + 

1 

10 

sin ( X 2 ) 

)
+ a 11 ln 

(
1 + 

1 

10 

sin ( X 3 ) 

)
+ a 12 ln 

(
1 + 

1 

10 

sin ( X 4 ) 

)
(3) 

for all calculations. 

The deviation in the global fitting, given by 

στ = 

{ ∑ N 
r=1 

(
X 1 r −

∑ n 
i =1 a i ω i ( | X r−τ 〉 ) 

)2 

N − 1 

} 

1 
2 

, (4) 

is the basis for the construction of our complex quantifier of chaos 

Z dyn . It is the square root of the sample variance. Above, only 

linear predictors in the adjustment parameters take part in the 

method. So we have P τ ( | ψ 〉 ) = 

∑ n 
i =1 a i ω i ( | X 〉 ) [12,14] . 

Z dyn = A 1 + i λdyn (5) 

Here, i = 

√ −1 is the imaginary unit and { A 1 , λdyn } are the statisti- 

cal magnitudes of interest. In the first, we put τ = 1 in the accuracy 

for a prediction time A τ [9] . 

A τ = 

∑ N−1 
r=1 | X r | 

3 ( N − 1 ) στ
(6) 

Another useful quantity in this scheme is the relative deviation for 

a prediction time D τ , defined by the rate 

D τ = 

στ

σ1 

. (7) 

The mean λdyn provides a quantifying for the predictability of a 

time series. In chaotic systems, this magnitude must be positive 

because the accuracy in forecasting decays with the increasing of 

the prediction time �θ . Its asymptotic behavior is λdyn → 0 if the 

time series is periodic or random [9] . 

λdyn = 

M−1 ∑ 

τ=1 

A τ − A τ+1 

M − 1 

(8) 

A powerful visual aid for the dynamic characteristic of a time 

series is the Diagram Accuracy–Deviation . It plots the logarithms 

{ln A τ , ln D τ } as functions of the parameter τ [9] . Fig. 1 shows the 

corresponding diagrams for a chaotic voltage (see Fig. 1 (a)) and 

random numbers (see Fig. 1 (b)). 

3. Applying the method in Dow Jones Index 

Three computational routines are responsible for the treatment 

of Dow Jones Index in the chaos approach perspective. The dy- 

namic characterization employs the program DynCharTS [9,21] , 

Table 1 

Quantifying of chaos in Dow Jones Index. In this table, NA abbreviates not applicable . 

Time Series Date Designation Z dyn 

A 1 λdyn 

I 20 September 1898 Early Stock Market 30.2 2.00 

II 2 March 1929 Before Great Depression 31.1 1.53 

III 29 October 1929 Black Tuesday NA NA 

IV 21 December1934 During Great Depression 16.8 0.95 

V 30 December 1950 None 48.3 3.17 

VI 30 December 1960 None 58.4 4.20 

VII 31 December 1970 None 53.1 3.58 

VIII 31 December 1980 None 35.2 2.29 

IX 19 October 1987 Black Monday NA NA 

X 29 December 20 0 0 None 31.5 1.99 

XI 15 September 2008 Financial Crisis 32.3 1.78 

XII 1 August 2017 None 46.3 3.08 

XIII NA Chaotic Circuit 88.1 7.80 

the LinGfiTS routine provides the global map for the forecast- 

ing tasks and the ConfiTS procedure calculates the deviation σ τ

(4) beyond to analyze the residuals in the fit [12,14] . They run in a 

Maple environment from the commands reproduced below. 

[ > Z := DynCharTS (Data = DowJones , Dim = 4 , Func = p , 

Final = 21179 , Level = 20 , PT = 12 ) ;
[ > M := LinGfiTS (V , 21179 , Func = p , Level = 20 ) ;
[ > S := ConfiTS (M , V , 21179 , Level = 20 , Analysis = 1 ) ;

The arguments above specify the time series ( Data ), the di- 

mension of phase space reconstruction ( Dim ), the functional form 

for the predictor ( Func ), the last index for analysis ( Final ), the 

interval of time series studied ( Level ), the maximum parameter 

τ for Dynamic Characterization ( PT ), the list of vectors employed 

in Global Fitting ( V ), the global map ( M ) and the analysis’ option 

( Analysis = 1 ). 
Distinct periods of the Dow Jones Index history are in our scope 

of analysis. The analysis covers thirteen set of data. The chaotic 

voltage take part in this study for comparison with the stock mar- 

ket (see Table 1 ). Each one of these time series has 648 observ- 

ables. The predictor (3) – in a four-dimensional Euclidean space –

is the basis for all analysis and forecasting. 

3.1. Results 

Fig. 2 shows the typical diagram for almost all time series stud- 

ied and the dynamic characteristic of the Economic Crash of 1929. 

Table 1 presents the statistical magnitudes of the chaos quanti- 

fier Z dyn while Table 2 shows the results related to forecasts for 

each period analyzed. They cover twelve values for the parame- 

ter τ . So the prediction times vary from one to twelve days in the 

stock market activity. Other two graphical representations of re- 

sults from our method are in Fig. 3 . It presents both the quality of 

a global mapping – with the parameter τ = 1 – and the accuracy 

in the prediction for the interval finished on 31 December 1970 

(period TS VII). The content of Fig. 4 is the residuals’ distribution 

in the global mapping of the series TS II and TS VII. 

3.2. On the robustness of global approach 

A relevant topic for both forecasting and dynamic characteri- 

zation is the robustness of the method. Determining of predic- 

tor employs the least squares minimization in global fitting. It is 

quite practical for our programs [12,14,21] . Even so, this mathemat- 

ical convenience must be subject to diagnostics because deviations 

from assumed assumptions can be present [22] . Strictly speaking, 

the predictors should be free of large residuals and produce the 
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