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a b s t r a c t 

In this paper, the dynamical analysis of a delayed reaction-diffusion virus infection model with logistic 

growth and chemotaxis for the uninfected target cells and humoral immune impairment is studied. By 

analyzing corresponding characteristic equations, the local stability of the infection-free equilibrium is 

established. The stability properties and Turing instability of the antibody-free equilibrium and antibody- 

present infection equilibrium have been extensively discussed. The existence of Hopf bifurcation with 

antibody response delay as a bifurcation parameter at the antibody-present infection equilibrium is es- 

tablished. The numerical simulations are carried out in order to illustrate the dynamical behavior of the 

model. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Mathematical models can provide insights into the dynamics of 

viral load in vivo. A proper model has proven to be valuable on 

the development of a better understanding of the disease. There 

has been much interest in mathematical modeling of viral dynam- 

ics within-host. Recently, many virus dynamics models with spe- 

cific immune response which plays a significant role in controlling 

the virus propagation were studied [1–10] . A specific immunity is 

composed of humoral immunity and cellular immunity, which is 

mainly expressed by B cells and T cells separately. Models with cel- 

lular immunity were studied more times [1–6,9] . But the humoral 

immunity is more effective than cellular in some infection pro- 

cesses [11] . Wang [7] constructed a mathematical model discussing 

the basic dynamical model with humoral immunity between unin- 

fected cells T ( t ), infected cells I ( t ), virus V ( t ) and B cells B ( t ). The 

model is described by the following differential equation ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dT (t) 

dt 
= A − dT (t) − βT (t) V (t) , 

dI(t) 

dt 
= βT (t) V (t) − aI(t) , 

dV (t) 

dt 
= kI(t) − uV (t) − qB (t ) V (t ) , 

dB (t) 

dt 
= gB (t) V (t) − cB (t) , 

(1) 
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In principle, uninfected cells are produced from precursors in 

the bone marrow and thymus in the body, and could multiply 

through mitosis when stimulated by antigen or mitogen. The pro- 

liferation rate of uninfected cells slows with the increase of the 

concentration of the uninfected cells. Adding logistic growth term 

in virus infection models has improved the understanding of the 

latent stage of infection. 

However, there are numerous experimental results suggesting 

that the virus generates mutants which escape from specific im- 

mune responses [12,13] . Many models are constructed under the 

assumption that the presence of the antigen can stimulate im- 

munity and ignore the immune impairment. In certain circum- 

stances, some pathogens can also suppress immune response or 

even destroy immunity especially when the load of pathogens is 

too high. Some researchers have studied the dynamics of virus in- 

fection models with impair immunity (see [2,6] ). 

To study the influences of spatial structures on virus dynam- 

ics, Wang [16] proposed an HBV model with spatial dependence 

and assumed that the motion of virus follows the Fickian diffu- 

sion. However, the mobility of susceptible cells, infected cells and 

immune cells are further neglected under normal conditions but 

viruses move freely in body in [16–23] . From a biological perspec- 

tive, cells are distributed in space and typically interact with the 

physical environment and other organisms in their spatial neigh- 

borhood [24] . There is a tendency that the uninfected cells would 

keep away from infected cells. In the same manner, the infected 

cells would get closer to the uninfected cells. During the process of 

viral infection, cytotoxic T lymphocyte (CTL) cells which attack in- 
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fected cells, and antibody cells which attack virus. The target cells, 

infected cells, virus and immune cells were assumed to follow the 

Fickian diffusion with the constant diffusion rate D 1 , D 2 , D 3 and D 4 . 

The fluxes of the target cells, infected cells, virus and immune cells 

are related to their concentration gradient and go from regions of 

high concentration to regions of low concentration. 

Mathematical modelling of chemotaxis (the movement of cells 

or organisms in response to chemical gradients) has applied not 

only in medicine but also in mathematics. In medicine, chemoat- 

traction is defined as a directed movement of organisms up a 

concentration gradients of chemotactic agents. On the contrary, 

chemorepulsion represents a directed movement of organisms 

down a concentration gradient of chemotactic agents (see [25,26] ). 

However, from mathematical point, chemotaxis plays an impor- 

tant role in the directed movements of organisms towards or away 

from the chemotactic agents (see [27] ). Here we also use a spa- 

tial chemotaxis term χ∇ ( T ∇ I ) to describe this interesting phe- 

nomenon [23] . 

For a full understanding of the dynamical behavior, in this pa- 

per, we propose a delayed reaction-diffusion virus infection model 

with logistic growth and humoral immune impairment given by 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂T (t, x ) 

∂t 
= D 1 �T (t, x ) − χ∇ (T (t, x ) ∇ I(t, x )) + A − dT (t, x ) 

+ rT (t, x )(1 − T (t, x ) 

k 
) − βT (t, x ) V (t, x ) , 

∂ I(t, x ) 

∂t 
= D 2 �I(t, x ) + βT (t , x ) V (t , x ) − aI(t, x ) , 

∂V (t, x ) 

∂t 
= D 3 �V (t, x ) + pI(t, x ) − uV (t, x ) − qB (t , x ) V (t , x ) , 

∂B (t, x ) 

∂t 
= D 4 �B (t, x ) + gB (t − τ, x ) V (t − τ, x ) 

−cB (t, x ) − mB (t , x ) V (t , x ) , 

(2) 

where t ∈ [0, ∞ ) and x ∈ [0, π ], with the homogeneous Neumann 

boundary conditions 

∂T (t, x ) 

∂x 
= 

∂ I(t, x ) 

∂x 
= 

∂V (t, x ) 

∂x 
= 

∂B (t, x ) 

∂x 
= 0 as 

x = 0 , π, t ≥ 0 , (3) 

and the initial conditions 

T (θ, x ) = φ1 (θ, x ) ≥ 0 , I(θ, x ) = φ2 (θ, x ) ≥ 0 , 

V (θ, x ) = φ3 (θ, x ) ≥ 0 , B (θ, x ) = φ4 (θ, x ) ≥ 0 , 
x ∈ [0 , π ] , θ ∈ [ −τ, 0] , (4) 

where φi (θ, x )(i = 1 , 2 , 3 , 4) is H ̈o lder continuous in [ −τ, 0] × [0 , π ] , 

which accounts for spatial dependence of the initial value of the 

target cells, infected cells, virus and immune cells at x , respectively. 

� = 

∂ 2 

∂x 2 
is the Laplacian operator, ∇ = 

∂ 
∂x 

is the gradient opera- 

tor, D 1 , D 2 , D 3 and D 4 are the rates at which the uninfected cells, 

the infected cells, the virus and the B cells diffuse. We choose the 

closed interval [0, π ] as the spatial domain mainly for simplicity 

of notations in computing the normal forms and for convenience 

of carrying out demonstrating numeric results. Generally, closed 

interval [ a, b ] can be transformed to [0, π ] by a translation and 

rescaling. According to the fundamental theory of partial functional 

differential equations [28] , the model (2) has a unique solution ( T ( t, 

x ), I ( t, x ), V ( t, x ), B ( t, x )) satisfying Neumann boundary conditions 

(3) and initial conditions (4) . The boundary conditions (3) imply 

that the target cells, infected cells, virus and immune cells do not 

move across the boundary. 

Our purpose in this paper is to investigate the dynamical prop- 

erties of model (2) . Particularly, we will investigate the stability of 

equilibria and the existence of Hopf bifurcation of the model. 

The organization of this paper is as follows. In the next sec- 

tion, the basic properties, such as the positivity and boundedness 

of solutions, the threshold values and the existence of equilibria 

are discussed. In Section 3 , the criteria on the local asymptotic sta- 

bility of the infection-free equilibrium and antibody-free infection 

equilibrium are stated and proved. In Section 4 , the sufficient con- 

ditions for the local asymptotic stability of the antibody-present 

infection equilibrium in case of delay τ = 0 are established. When 

delay τ > 0, the Hopf bifurcation at the antibody-present infection 

equilibrium is discussed, and the existence criterion is established. 

In Section 5 , the numerical examples are presented to illustrate 

main theoretical results. Lastly, a conclusion is given in Section 6 . 

2. Basic properties 

In model (2) –(4) , the parameters d , a , u and c represent the 

death rate of the uninfected cells, the infected cells, the virus and 

the B cells, respectively; β is the infection rate; A , p and g are birth 

rate of the uninfected cells, the virus and the B cells, respectively; 

q is the B cells neutralize rate; r is the maximum proliferation rate 

of uninfected cells; k is the maximum level of uninfected cell con- 

centration in the body; τ denotes immune response delay which 

is suggested between antigenic stimulation and generating B cells; 

an immune impairment term is mB ( t ) V ( t ). During the course of vi- 

ral infection, the modulation of infected cells is a key aspect in 

viral pathogenesis. It contributes to viral evasion from immunity 

because the dysfunction of target cells engenders some impair- 

ment effects for CTL inducement [14] . Iwami et al. [15] discovered 

the existence of so-called Risky threshold and Immunodeficiency 

threshold on the impairment rate. This implies that immune sys- 

tem may activate when the birth rate of immune cells exceeds the 

impairment rate; otherwise, the immune system always collapses. 

So, we always assume g > m in this paper. 

Denote C = C([ −τ, 0] × [0 , π ] , R 4 ) , X = { φ ∈ C 2 ([0 , π ] , R 4 ) : 
dφ(x ) 

dx 
= 0 for x = 0 , π} and N 0 = { 0 , 1 , 2 , · · · } . For any continuous 

function ω : [ −τ, b) × [0 , π ] → R 4 for b > 0, we define ω t ∈ C by 

ω t (s, x ) = ω(t + s, x ) for s ∈ [ −τ, 0] and x ∈ [0, π ]. It is easy to 

prove that function h (t) = ω t is a continuous function from [0, b ) 

to C. 

Theorem 1. For any given initial function φ ∈ C, model (2) has a 

unique nonnegative solution x (t, x ) = (T (t, x ) , I(t, x ) , V (t, x ) , B (t, x )) 

satisfying Neumann boundary conditions (3) and initial conditions (4) . 

Furthermore, when χ = 0 (that is in the absence of chemotactic ef- 

fects), D 1 = D 2 and D 3 = D 4 , then this solution is defined for all t ≥ 0 

and is also bounded. 

Proof. We define F = (F 1 , F 2 , F 3 , F 4 ) : C → R 4 by for any φ = 

(φ1 , φ2 , φ3 , φ4 ) 
T ∈ C

F 1 (φ) = A − dφ1 (0 , x ) + rφ1 (0 , x ) 

(
1 − φ1 (0 , x ) 

k 

)

−βφ1 (0 , x ) φ3 (0 , x ) , 

F 2 (φ) = βφ1 (0 , x ) φ3 (0 , x ) − aφ2 (0 , x ) , 

F 3 (φ) = pφ2 (0 , x ) − uφ3 (0 , x ) − qφ3 (0 , x ) φ4 (0 , x ) , 

F 4 (φ) = gφ3 (−τ, x ) φ4 (−τ, x ) − cφ4 (0 , x ) − mφ3 (0 , x ) φ4 (0 , x ) . 

Then, model (2) –(4) can be rewritten as the following abstract 

functional differential equation 

dω(t) 

dt 
= Dω + F (ω t ) , ω(0) = φ ∈ C, (5) 

where ω = (T , I, V, B ) T , φ = (φ1 , φ2 , φ3 , φ4 ) 
T and Dω = (D 1 �T −

χ∇ (T ∇ I ) , D 2 �I , D 3 �V, D 4 �B ) T . It is clear that F is locally Lips- 

chitz in C. By [28–30] , we deduce that model (5) admits a unique 

local solution ω t = (T (t, x ) , I(t, x ) , V (t, x ) , B (t, x )) defined on [0, 

T max ), where T max > 0 is a constant. From [29] , we further can ob- 

tain that ω t is also nonnegative for t ∈ [0, T max ). 
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