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a b s t r a c t 

Cooperation is widespread in society, thus how to explain this phenomenon has become one open ques- 

tion. According to empirical experience, preferential learning and memory seem to be two effective ways 

to this issue, which, however, still needs validation in scientific research. Motivate by this point, we con- 

sider one-step memory and preference learning (i.e. learning the strategy of subject performing best, 

which is tuned by a preferential parameter α) in prisoner’s dilemma game. α = 0 enables the model go- 

ing back to control treatment where objects randomly selected. While for α > 0, individuals prefer objects 

that perform better. Compared with control treatment, we find that increasing preferential parameter α
can promote cooperative behavior monotonously. In particular, the larger the value of α, the stronger and 

more compact clusters they can form. Finally, in order to investigate the robustness of this mechanism, 

we also study the evolution of cooperation in small-world network and random regular network. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

Cooperative behavior among unrelated individuals is abundant 

in nature and society, ranging from microorganism groups to hu- 

man society. Explaining its emergency has attracted great inter- 

est in interdisciplinary research fields including biology, physics 

and sociology [1–4] . Evolutionary game theory provides a power- 

ful approach to solve this problem. The prisoner’s dilemma game 

(PDG), which is one of the most popular models of this theory, 

has attracted much attention in both theoretical and experimental 

studies [5–10] . In a typical PDG, two players must simultaneously 

choose whether cooperate (C) or defect (D). They can receive the 

reward R if they both cooperate, and punishment P for mutual de- 

fect. However, if one choose defect while the other choose cooper- 

ate, it is able to obtain the temptation T while the co-player suffers 

the payoff S . The ranking of four payoffs satisfies T > R > P > S , from 

which it is obvious that no matter what choice the opponent takes, 

defector always outperforms cooperator. So, they will fall into the 

mutual defection state, which is the so-called social dilemma. 

In order to resolve the above unfavorable situation, many mech- 

anisms have been proposed over the past years [11–24] . Interest- 

ingly, Nowak [25] summarized all these scenarios to five mecha- 

nisms: kin selection, direct reciprocity, indirect reciprocity, network 

reciprocity and group selection. Among these achievements, net- 

work reciprocity has been widely studied by scholars from differ- 
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ent fields and proved to be an effective way to promote the evolu- 

tion of cooperation. After this seminal idea, more setups on com- 

plex network have been proposed, which can resist the invasion of 

defectors and promote the emergency of cooperation. Examples in- 

clude the migration [22–24] , punishment mechanism [25] , expec- 

tation [26] , coevolution mechanism [27–29] and environment fac- 

tor [30,31] , to name but a few. Recently, prisoner’s dilemma game 

on interdependent network [32] also attract extensive investigate 

and explains many interesting phenomenon. Besides, preference 

learning, choosing object of better performance, has proven to be 

an effective way for maintaining cooperation [33] . 

In our society, except for mentioned mechanisms, we also rely 

on our memory, which may play a positive role in the evolution 

of cooperation [34] . However, individuals are restricted by limited 

information and memory, they always have clear memory for what 

just happened [35–41] . Inspired by these successful effort s, an in- 

teresting question appears: if we combine the one step memory 

and preference learning to explore the evolution of cooperation 

with the structure population, does this setup promote coopera- 

tion? Along this line, we use Monte Carlo simulation to answer 

this question and find that cooperative behavior can be promoted 

obviously. Especially, the stronger preferential learning, the higher 

the level of cooperation. 

The rest of this paper is composed of three sections. In 

Section 2 , we present our evolutionary game model, including the 

new definition of preferential learning. Section 3 describes numer- 

ical simulation results. Finally, we discuss the results and make a 

conclusion of the paper in Section 4 . 
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2. Model 

In our work, we choose the weak PD game, in which the payoffs 

are defined as T = b > 1(the temptation of defection), R = 1(the reward 

of mutual cooperation), P = S = 0. Thus we express the payoff matrix 

as: 

M = 

(
1 0 

b 0 

)
. (1) 

As to interaction network, each player x occupies one node of 

L ∗L square lattice with periodic boundary conditions, and each 

player is initially appointed to be either a cooperator or a defector 

on square lattices with equal probability, which can be described 

as 

S x = ( 1 , 0 ) 
T 
, S x = ( 0 , 1 ) 

T 
. (2) 

The game is iterated forward in accordance with the Monte 

Carlo simulation procedure. First, player x plays the game with 

nearest neighbor y and obtained incomes P x : 

P x = 

∑ 

y ∈ N x 
s T x M s y , (3) 

where N x represents the four neighbors of individual x . Then, 

player x will select an interaction object z with the following prob- 

ability: 

πz = 

exp ( α ∗ P z ) ∑ 

z exp ( α ∗ P z ) 
, (4) 

where α is a newly introduced preferential learning parameter. In 

particular, it is worth mentioned that P z is composed of two parts: 

the payoff of neighbor y in current round, and the payoff of himself 

last round, i.e. P x ( t − 1 ) , which represents one-step memory for his 

strategy and payoff. When α = 0 , it goes back to control treatment 

where an interaction object randomly selected from five individ- 

uals. When α > 0, the focal player x prefers to learn the strategy 

who have a higher payoff. Lastly, player x adopts the strategy from 

object z with the probability W depending on the payoff differ- 

ence: 

W = 

1 

1 + exp [ ( P x − P z ) /K ] 
, (6) 

where K denotes the noise or its inverse, including irrationality and 

errors. Since the effect of noise K has been well studied in the 

previous papers [42,43] , we use K to be 0.1. During a full Monte 

Carlo step all players will update their strategy. To worth raising, 

the key quantity the fraction of cooperation ρc was determined the 

last 5 × 10 3 steps of the full Monte Carlo simulations with 5 × 10 4 

steps, and all the simulations are carried out on the lattice with 

L = 100. 

3. Results 

It is instructively to first examine how the frequency of cooper- 

ation change with the temptation b for different value of parame- 

ter α in Fig. 1 . For α = 0, the model returns back control treatment 

of spatial prisoner’s dilemma game, and the cooperators died out 

quickly even b is small. However, as the increase of parameter α, 

the evolution of cooperation can be promoted more effectively. 

Especially, when α = 5, cooperative behavior nearly dominant the 

whole population when the value of b is small, the defectors can 

only survive for larger b . So, when we consider the focal individ- 

ual’s last step state as one of its neighbors and preference learn- 

ing, it is benefit for the evolution of cooperation. And the value 

of α plays a crucial role: the larger the value of α, the more obvious 

the facilitating effect. Moreover, it is worth noting that the thresh- 

old b c , making extinction of cooperation, increase with α. In what 

follows, we will examine this claim more precisely. 

Fig. 1. The frequency of cooperators ρc as a function of the temptation parameter b 

with various selection parameter α. Compared with control treatment ( α = 0 ), with 

the increase of parameter α, cooperative behavior can be promoted effectively. The 

insets show the relationship between the threshold b c , where cooperation dies out, 

and α. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 2. Time evolution of the cooperative behavior on square lattices for K = 0.1, 

b = 1.075. From down to up, it represents the value of parameter α = 0, 0.5, 1, 2, 

5, respectively. For control treatment (red curve), cooperators go extinct quickly. 

While considering preference selection, the cooperative behavior increases gradually 

with the increasing of α. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

In order to explain the influence of parameter α, we explore the 

time evolution of cooperative behavior for different values of se- 

lection parameter with a given b and α in Fig. 2 . It is obvious that 

cooperators die out when α = 0 (red line). With the increase of pa- 

rameter α, cooperators can survive from the invasion of defectors. 

The station state is mix C + D phase: when α ≤ 1, defectors outper- 

form cooperators and occupy the larger proportion of the whole 

population. However, when α > 1, the cooperation level is higher 

than defectors’. Interestingly, except for the situation α = 0, no mat- 

ter what value of α, in the early stage of evolution, cooperative be- 

havior decrease first and then increase to station state. Thus, this 

setup facilitates the evolution of cooperation. The larger the value 

of a , the higher level of cooperation. 

Subsequently, to qualify the effect of α more precisely, we in- 

specting the spatial pattern formed by cooperators and defectors 

for different value of parameter α in Fig. 3 . We simulate the evolu- 

tion game fix b = 1.075, K = 0.1. When α = 0 ( Fig. 1 (a)), the focal in- 

dividual will randomly choose a neighbor to learn strategy from its 

nearest four neighbor and the last step state. Obviously, defectors 

dominant the whole square lattice even b is small. In Fig. 2 (b), a 

small fraction of cooperators can survive by forming small clusters. 
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