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a b s t r a c t 

In real networks, clustering is of great value to the analysis, design, and optimization of numerous com- 

plex systems in natural science and engineering, e.g. power supply systems ,modern transportation net- 

works, and real-world networks. However, the majority of them simply pay attention to the density of 

edges rather than the signs of edges as the attributes to cluster, which usually suffer a high-level com- 

putational complexity. In this paper, a new rule is proposed to update the attributes flow, which can 

guarantee network clustering reach a state of optimal convergence. The positive and negative update rule 

we introduced, represent the cooperative and hostile relationship, and the attribute configuration will con- 

vergence and one can identify the reasonable cluster configuration automatically. An algorithm with high 

efficiency is proposed: a nearly linear relationship is found between the time complexity and the size in 

sparse networks. Finally, we conduct the verification of the algorithmic performance by a representative 

simulations on Correlates of War data. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the real world, social networks are used in modeling of 

numerous complex systems [1–3] . We can use G = { V, E} as a 

graph to define a social network, where the set of vertices is de- 

fined as V = { 1 , . . . , n } , and the set of edges which connecting 

pairs of vertices is defined as E . An example is that vertices indi- 

cate agents/individuals ,and edges indicate relations/links between 

nodes in an interpersonal network. The signed social networks, 

which is used to describe the social networks with positive and 

negative links, where “friendship”as an example of “positive rela- 

tionship” is denoted by positive links ,and equally a “negative re- 

lationship” such as “hostility” may be indicated by negative links 

[4–12] . An example can be cited in the Gahuku-Gama subtribes 

network is that the “political alliance relation” are represented by 

the positive links, while “political opposition relation” are repre- 

sented by the negative links [13] . We can create the signed net- 

∗ Corresponding author at: School of Management Science and Engineering, Cen- 

tral University of Finance and Economics, Beijing 10 0 080, China. 

E-mail addresses: hjli@amss.ac.cn , lihuu20 0 0@126.com (H.-J. Li), buzhan@ 

nuaa.edu.cn (Z. Bu), caojie690929@163.com (J. Cao). 

work by the relationships,and obtain more learning about the at- 

tributes of the social networks such as the cluster configuration 

[14,15] from the analysis and mining on it. Clusters in networks 

refer to the phenomenon when nodes of the network can be natu- 

rally grouped into sets such that each set is densely connected in- 

ternally, thus dividing the network into smaller groups with dense 

internal connections and sparser external connections. The links 

whose density and signs combine to define the signed network 

clusters. Qualitatively, clusters in signed network are defined as 

subgraphs that the positive links are within the nodes in each 

group and the negative link are connected between the different 

groups of nodes [16,17] . For the discovery of the hidden cluster 

configuration, it is anything but simple to find the optimal and 

steady partition of the network. 

Despite many clustering techniques have been presented for 

analysis in the field of complex network, the majority of them sim- 

ply pay attention to the density of edges rather than the signs of 

edges as the attributes to cluster [18–20] . If an accuracy within ac- 

ceptable limits is obtained based on comparison between the inter- 

nal and external cohesion of a subgraph by the traditional heuris- 

tic methods, the complexity of computation is usually high-level 

[21,22] . In this paper, a new rule is proposed to update attributes, 

which can guarantee network clustering reach a state of optimal 
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convergence. By introducing the positive and negative update rule 

to represent the cooperative and hostile relationship [23] , one can 

prove the convergence and divergence of the attribute evolution 

in mean and find its conditions. Unlike the heuristic method, the 

number clusters is not specified by user, meanwhile, the reason- 

able partition can be automatically distinguished by it. An algo- 

rithm with high efficiency is proposed: a nearly linear relation- 

ship is found between the time complexity and the size in sparse 

networks. Finally, we conduct the verification of the algorithmic 

performance by a representative simulations on Correlates of War 

data. 

2. Materials and methods 

2.1. Signed network 

An undirected connected social network without self loops can 

be considered as G = (V, E) , where the set of vertices is defined 

as V = { 1 , . . . , n } , and the set of edges which connecting pairs 

of vertices is defined as E . For a signed network , we mark these 

positive and negative edges with a plus sign “+ ” and a minus 

sign “−” respectively in E , where “+ ” indicates a collaboration or 

friend relationship and “−” indicates an opponent or enemy re- 

lationship. In order to analyse, E is divided into the positive and 

negative edge collections,which are separately denoted as E pst and 

E neg . The positive and the negative networks are separately de- 

noted as G pst = (V, E pst ) and G neg = (V, E neg ), where E pst ∩ E neg = Ø

and E pst ∪ E neg = E. In General, it can be considered that the neg- 

ative edge collection E neg is nonempty. For signed network G , the 

following definition is used to define a k -clusters configuration. 

Definition 1. Let’s call V = V 1 ∪ V 2 . . . ∪ V k is k -clusters configura- 

tion in a signed network G . The label of each edge within V i or 

between different V i is positive or negative, respectively. Here, ev- 

ery V i is nonempty and any two different V i satisfies disjoint. 

Intuitively, cutting all the negative links, which makes dis- 

tinguishing clusters in partitionable or balanced signed networks 

completed easily. The positive links will be merely included in the 

subgraphs we achieved and clusters will take shape. However, the 

discrimination assignment becomes extraordinary owing to some 

scenarios : 1) the signed social networks cannot be partitioned and 

2) despite it is feasible to cut the signed social networks by parti- 

tioning, merely cutting negative links cannot achieve the optimal 

partition or the most natural partition. Actually before cutting out 

all negative links, some large subgraphs with some isolated nodes 

arising from large subgraphs in a great number. In order to iden- 

tify more natural clusters, the steady partitions of subgraphs in an 

increasing number are supposed to be reasonably ignored as well 

as keeping some positive and negative links (or reasonably reduce 

their effect). 

What we find especially interesting is that the definition of 

cluster configuration can be related to the balance theory in signed 

network [23,24] . 

Definition 2. A signed graph is defined as G = (V, E) . Then 

(i) G is a weak equilibrium if it satisfies that there is an integer 

k ≥ 2 and a k -way partition V = V 1 ∪ V 2 . . . ∪ V k , where V 1 , . . . , V k are 

nonempty and disjoint with each other, in this way any edge be- 

tween different V i or within each V i is negative or positive, respec- 

tively. 

(ii) G is a strong equilibrium when it satisfies that itself is a weak 

equilibrium and k = 2 . 

2.2. Attribute dynamics 

The attribute , or opinion of the nodes can be denoted as a real 

and scalar value when the nodes initiate interactions. For each 

node at time k , its attribute vector is defined as x (k ) ∈ R n . The at- 

tribute of nodes will be updated according to the situation that 

nodes interact with their collaborators or opponents. Particularly, 

only two nodes { i, j } are chosen and the following rules are used 

to update their attribute at each time k . 

• ( Positive Update Rule ) If { i, j } ∈ E pst , we update the attribute of 

node m ∈ { i, j } as 

x m 

(k + 1) = x m 

(k ) + α(x −m 

(k ) − x m 

(k )) 

= (1 − α) x m 

(k ) + αx −m 

(k ) , (1) 

where −m ∈ { i, j}\{ m } and 0 ≤α ≤ 1. 

• ( Negative Update Rule ) If { i, j } ∈ E neg , we update the attribute of 

node m ∈ { i, j } as 

x m 

(k + 1) = x m 

(k ) − β(x −m 

(k ) − x m 

(k )) 

= (1 + β) x m 

(k ) − βx −m 

(k ) , (2) 

where β ≥ 0 

For the positive update rule, nodes update their attributes 

based on the previous attributes of nodes and of their neighbors 

which are regarded as a convex combination. The cooperative or 

unsuspecting relationships are shown naturally in this update. The 

positive update rule, considered as the attraction of the attributes, 

which tends to drive node attributes closer to each other. 

On the other hand, there are controversy over the dynamics on 

the negative edges in the literature. Substantial efforts have been 

taken to characterize these suspecting or hostile relationships. The 

proposed negative update rule, is the contrary of the positive up- 

date rule, which enforces attribute differences between interacting 

nodes. Note that the negative update rule satisfies the following 

elaborations: 

• Node i tries to trick her negative neighbors j , by turning to 

the opposite sign of her true attribute (i.e., x i ( k ) to −x i (k ) ) before 

showing it to j ; 

• Node i distinguishes j as her negative neighbor and upon ob- 

serving x j ( k ) which is j ’s true attribute, she attempts to get closer 

to the opposite view of j since x i (k + 1) is a convex combination of 

x i ( k ) and −x j (k ) . 

2.3. The mean convergence and divergence 

Let define the (random)vector of attributes at time k resulting 

from the node interactions as x (k ) = (x 1 (k ) , . . . , x n (k )) , k = 0 , 1 , . . . . 

The initial attributes x (0) is also denoted as x 0 and deemed to be 

featured in determinacy. In this section, we make a thorough in- 

vestigation into the mean evolution of the attributes. We present 

the following definition. 

Definition 3. (i) The expected attribute convergence is obtained if 

lim k →∞ 

E { x i (k ) − x j (k ) } = 0 for all i and j . 

(ii) The expected attribute divergence is obtained if 

lim sup k →∞ 

max i, j | E { x i (k ) − x j (k ) }| = ∞ . 

2.3.1. Node pair selection 

The actual interactions are selected using the following model: 

nodes interact with each other in the moment of a rate-one Pois- 

son process and a node was selected randomly to interact with the 

others in each of these moments. Under this model, only one node 

or none originates an interaction at a given time. Ordering interac- 

tion events promptly and concentrating on modeling the node pair 

which is selected at interaction times. The node selection process 

is characterized by an n × n stochastic matrix P = [ p i j ] , complying 

with the graph G in the sense that p ij > 0 always implies { i, j } ∈ 

E for i 
 = j ∈ V . We use p ij to denote the probability that node i in- 

teracts with node j immediately after the node pair selection is 

executed as follows. 
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