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a b s t r a c t 

A large number of optimization algorithms have been developed by researchers to solve a variety of com- 

plex problems in operations management area. We present a novel optimization algorithm belonging to 

the class of swarm intelligence optimization methods. The algorithm mimics the decision making pro- 

cess of human groups and exploits the dynamics of such a process as a tool for complex combinatorial 

problems. In order to achieve this aim, we employ a properly modified version of a recently published 

decision making model [64,65], to model how humans in a group modify their opinions driven by self- 

interest and consensus seeking. The dynamics of such a system is governed by three parameters: (i) the 

reduced temperature βJ , (ii) the self-confidence of each agent β ′ , (iii) the cognitive level 0 ≤ p ≤ 1 of each 

agent. Depending on the value of the aforementioned parameters a critical phase transition may occur, 

which triggers the emergence of a superior collective intelligence of the population. Our algorithm ex- 

ploits such peculiar state of the system to propose a novel tool for discrete combinatorial optimization 

problems. The benchmark suite consists of the NK - Kauffman complex landscape, with various sizes and 

complexities, which is chosen as an exemplar case of classical NP-complete optimization problem. 

A comparison with genetic algorithms (GA), simulated annealing (SA) as well as with a multiagent version 

of SA is presented in terms of efficacy in finding optimal solutions. In all cases our method outperforms 

the others, particularly in presence of limited knowledge of the agent. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Human groups are proven to outperform single individuals in 

solving a variety of complex tasks in many different fields, in- 

cluding new product development, organizational design, strat- 

egy planning, research and development. Their superior ability 

originates from the collective decision making: individuals make 

choices, pursuing their individual goals on the basis of their own 

knowledge/expertise and adapting their behavior to the actions of 

the other agents. Social interactions, indeed, promote a mechanism 

of consensus seeking within the group, but also provide a useful 

tool for knowledge and information sharing [1–4,40] . This type of 

decision making dynamics is common to many social systems in 
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Nature, e.g., flocks of birds, herds of animals, ant colonies, school 

of fish [40–50] , as well as bacterial colonies [5–7] , and even to ar- 

tificial systems [8–11] . 

Even though the single agent possesses a limited knowledge, 

and the actions it performs are usually very simple, the collec- 

tive behavior leads to the emergence of a superior intelligence 

known as swarm or collective intelligence [12–15,29] , which in 

the last years have seen a huge growth of applications in the 

field of optimization swarm-based algorithms in operations man- 

agement context [30–33] . The swarm algorithms exploit the col- 

lective intelligence of the social groups, such as flock of birds, 

ant colonies, and schools of fish, in accomplishing different tasks. 

They include the Ant Colony Optimization (ACO) [17–19] , the Par- 

ticle Swarm Optimization [20] , the Differential Evolution [21] , the 

Artificial Bee Colony [22,23] , the Glowworm Swarm Optimization 

[24,25] , the Cuckoo Search Algorithm [26] , and very recently the 
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Grey Wolf Optimizer [27] and the Ant Lion Optimizer [28] . These 

algorithms share remarkable features, such as decentralization, 

self-organization, autonomy, flexibility, and robustness, which have 

been proven very useful to solve complex operational tasks [34,35] . 

Applications of ACO algorithm mainly concern the traveling sales- 

man problem, scheduling, vehicle routing, and sequential ordering 

[36] . More recently, they have been also employed in supply chain 

contexts to solve production-inventory problems [37,38] and net- 

work design [39] . 

In this paper we propose a novel swarm intelligence optimiza- 

tion algorithm to solve complex combinatorial problems. The pro- 

posed algorithm is inspired by the behavior of human groups and 

their ability to solve a very large variety of complex problems, 

even when the individuals may be characterized by cognitive lim- 

itations. Although it is widely recognized that human groups, such 

as organizational teams, outperform single individuals in solving 

many different tasks including new product development, R&D ac- 

tivities, production and marketing issues, literature is still lacking 

of optimization algorithms inspired by the problem solving process 

of human groups. Similarly to other social groups, human groups 

are collectively able, by exploiting the potential of social interac- 

tions, to achieve much better performance than single individu- 

als can do. This specific ability of human groups has been defined 

as group collective intelligence [51,52] that recently is receiving a 

growing attention in the literature as to its antecedents and proper 

measures [51,52] . 

The proposed algorithm, hereafter referred to as Human Group 

Optimization (HGO) algorithm, is developed within the method- 

ological framework recently proposed by CG [53,54] to model the 

collective decision making of human groups. This model captures 

the main drivers of the individual behavior in groups, i.e., self- 

interest and consensus seeking, leading to the emergence of col- 

lective intelligence. The group is conceived as a set of individu- 

als making choices based on rational calculation and self-interested 

motivations. However, any decision made by the individual is also 

influenced by the social relationships he/she has with the other 

group members. This social influence pushes the individual to 

modify the choice he/she made, for the natural tendency of hu- 

mans to seek consensus and avoid conflict with people they inter- 

act with [55] . As a consequence, effective group decisions sponta- 

neously emerge as the result of the choices of multiple interacting 

individuals. 

To test the ability of HGO algorithm, we compare its perfor- 

mance with those of some benchmarks chosen among trajectory- 

based and population-based algorithms. In particular, the HGO is 

compared with the Simulated Annealing (SA), a Multi Agent ver- 

sion of the Simulated Annealing (MASA) and with genetic algo- 

rithms (GA). 

2. The decision making model of human groups 

Here we briefly summarize the decision making model pre- 

sented in Ref. [53,54] . We consider a human group made of M so- 

cially interacting members, which is assigned to accomplish a com- 

plex task. The task is modelled in terms of N binary decisions and 

the problem consists in solving a combinatorial decision making 

problem by identifying the set of choices (configuration) with the 

highest fitness, out of 2 N configurations. 

As an example of application of the method, the fitness land- 

scape, i.e., the map of all configurations and associated fitness 

values, is generated following the classical NK procedure (see 

Appendix A for more details), where N are the decisions and K the 

interactions among them. Each decision d i of the vector d is a bi- 

nary variable d i = ±1 , i = 1 , 2 , . . . , N. Each vector d is associated 

with a certain fitness value V ( d ) computed as the weighted sum of 

N stochastic contributions W j 

(
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depend on the value of the decision d j itself and the values of 

other K decisions d 
j 
i 
, i = 1 , 2 , . . . , K, and are determined following 

the classical NK procedure [56–58] . The fitness function is then de- 

fined as 
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The integer index K = 0 , 1 , 2 , . . . , N − 1 corresponds to the number 

of interacting decision variables, and tunes the complexity of the 

problem: increasing K increases the complexity of the problem. In- 

dividuals are characterized by cognitive limits, i.e. they posses a 

limited knowledge. The level of knowledge of the k th member of 

the group is identified by the parameter p ∈ [0, 1], which is the 

probability that each single member knows the contribution of the 

decision to the total fitness. 

Based on the level of knowledge, each member k computes 

his/her own perceived fitness (self-interest) as follows: 

V k ( d ) = 
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j=1 D k j W j 
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)
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where D is the matrix whose elements D kj take the value 1 with 

probability p and 0 probability 1 − p. 

During the decision making process, each member of 

the group makes his/her choices to improve the per- 

ceived fitness (self-interest) and to seek consensus within 

the group. The dynamics is modelled by means of a 

continuos-time Markov process where the state vector s 

of the system has M × N components s = ( s 1 , s 2 , . . . , s n ) = (
σ 1 
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)
. The variable 

σ j 

k 
= ±1 is a binary variable representing the opinion of the 

member k on the decision j . The probability P ( s , t ) that at time t , 

the state vector takes the value s out of 2 N possible states, satisfies 

the master equation 

dP 

dt 
= −

∑ 

l 

w 

(
s l → s ′ l 

)
P ( s l , t ) (3) 
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(
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(
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)
where s l = (s 1 , s 2 , ., s l ., s n ) and s ′ 

l 
= (s 1 , s 2 , ., −s l ., s n ) . The transition 

rate of the Markov chain (i.e. the probability per unit time that the 

opinion s l flips to −s l while the others remain temporarily fixed) 

is defined so as to be the product of the transition rate of the 

Ising–Glauber dynamics [59] , which models the process of consen- 

sus seeking to minimize the conflict level, and the Weidlich expo- 

nential rate [60,61] , which models the self-interest behavior of the 

agents: 
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)]}
In Eq. (4) A lh are the elements of the adjacency matrix, J / 〈 κ〉 

is the social interaction strength and 〈 κ〉 the mean degree of the 

network of social interactions. The quantity β is the inverse of the 

social temperature that is a measure of the degree of confidence 

the members have in the other judgement/opinion. Similarly, the 

quantity β ′ is related to the level of confidence the members have 

about their perceived fitness (the higher β ′ , the higher the confi- 

dence). 
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