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a b s t r a c t 

The present paper is devoted to the development of a kind of spectral meshless radial point interpola- 

tion (SMRPI) technique for solving fractional cable equation in one and two dimensional cases. The time 

fractional derivative is described in the Riemann–Liouville sense. The applied approach is based on a 

combination of meshless methods and spectral collocation techniques. The point interpolation method 

with the help of radial basis functions is used to construct shape functions which act as basis functions 

in the frame of SMRPI. It is proved the scheme is unconditional stable with respect to the time variable 

in H 

1 and convergent by the order of convergence O(δt γ ) , 0 < γ < 1. In the current work, the thin plate 

splines (TPS) are used as the basis functions. The results of numerical experiments are compared with 

analytical solution to confirm the accuracy and efficiency of the presented scheme. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent years there has been a growing interest in the field 

of fractional calculus [1–3] . Fractional differential equations have 

attracted increasing attention because they have applications in 

various fields of science and engineering [4] . Many phenomena 

in fluid mechanics, viscoelasticity, chemistry, physics, finance and 

other sciences can be described very successfully by models us- 

ing mathematical tools from fractional calculus, i.e., the theory of 

derivatives and integrals of fractional order. Some of the most ap- 

plications are given in the book of Oldham and Spanier [1] , the 

book of Podlubny [2] and the papers of Metzler and Klafter [5] , 

Bagley and Trovik [6] . Also a comprehensive overview of the de- 

velopment history of fractional calculus has been given in [7] . 

As is said in [3] the cable equation is one of the most funda- 

mental equations for modeling neuronal dynamics. The Nernst–

Planck equation of electrodiffusion for the movement of ions in 

neurons has also been shown to be equivalent to the cable equa- 

tion under simplifying assumptions [8] . Some authors have eluci- 

dated that if the ions are undergoing anomalous subdiffusion then 

the comparison with models that assume standard or normal dif- 

fusion will likely lead to incorrect or misleading diffusion coeffi- 

cient values [9] , and models that incorporate anomalous diffusion 

should be used. Langlands et al. [10,11] derived a fractional vari- 
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ant of the Nernst–Planck equation to model the anomalous sub- 

diffusion of the ions. The present paper considers one and two- 

dimensional fractional cable equation as follows ⎧ ⎨ ⎩ 

∂u ( x , t) 

∂t 
= ρ1 

[
0 D 

1 −α
t �u ( x , t) 

]
− ρ2 

[
0 D 

1 −β
t u ( x , t) 

]
+ f ( x , t) , 

x ∈ 	 ⊂ R 

d , d = 1 , 2 , t ∈ (0 , T ] , 

(1) 

with initial condition 

u ( x , 0) = u 0 ( x ) , x ∈ 	 = 	 ∪ ∂	, (2) 

and boundary condition 

u ( x , t) = h ( x , t) , x ∈ ∂	, t > 0 , (3) 

where � is Laplacian operator, ∂	 is the closed curve bounding 

the region and 	 denotes the spatial domain, 0 < α, β < 1, ρ1 and 

ρ2 are two positive constants, and u 0 ( x , t) , h ( x , t) are known suffi- 

ciently smooth functions in their respective domains. The notation 

0 D 

1 −γ
t ( γ = α, β) denotes the Riemann–Liouville fractional deriva- 

tive operator which is defined as 

0 D 

1 −γ
t u ( x , t) = 

1 


(γ ) 

∂ 

∂t 

∫ t 

0 

u ( x , s ) 

(t − s ) 1 −γ
ds, γ = α, β, (4) 

where 
(.) is the Gamma function. Some different works have 

been done on developing numerical methods for solving the frac- 

tional cable equation [12,13] . As a non-complete list, one can be re- 

ferred to the resources that will be coming. Henry et al. [14] stud- 

ied the fractional Nernst–Planck equation for modeling anoma- 

lous electrodiffusion in spiny dendrites. They subsequently found 
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a fractional cable equation by treating the neuron and its mem- 

brane as two separate materials governed by separate fractional 

Nernst–Planck equations and employed a small ionic concentra- 

tion gradient assumption [10,11] . The resulting equation involves 

two fractional temporal Riemann–Liouville derivatives. Langlands 

et al. [15] modeled the anomalous subdiffusion by replacing dif- 

fusion constants with time dependent operators parameterized by 

fractional order exponents. They obtained fundamental solutions 

of the fractional cable equations as functions of the scaling pa- 

rameters for infinite cables and semi-infinite cables with instanta- 

neous current injections. Also, they derived action potential firing 

rates based on simple integrate and fire versions of the models. 

The same authors in [16] presented solutions on finite domains for 

mixed Robin boundary conditions. Liu et al. [3] proposed two new 

implicit numerical methods with convergence order O(δt + h 2 ) 

and O(δt 2 + h 2 ) for the fractional cable equation, where δt and 

h are the time and space step sizes. They investigated the stabil- 

ity and convergence of these methods using the energy method. 

Lin et al. [17] proposed a schema combining a finite difference ap- 

proach in the time direction and a spectral method in the space 

direction and analyzed for the fractional cable equation. Also they 

proved unconditional stability and convergence of the method. Hu 

and Zhang [18] proposed two implicit compact difference schemes 

for the fractional cable equation and in addition, they proved the 

stability and convergence in L ∞ 

-norm of these methods by the 

energy method. Zhang et al. [19] proposed discrete-time orthog- 

onal spline collocation (OSC) methods for the two-dimensional 

fractional cable equation. They proved unconditional stability and 

convergence with the order O(δt min (2 −γ1 , 2 −γ2 ) + h r+1 ) in L 2 -norm 

where δt, h and r are the time step size, space step size and poly- 

nomial degree, respectively, and γ 1 and γ 2 are two different ex- 

ponents of fractional derivatives with 0 < γ 1 , γ 2 < 1. Dehghan and 

Abbaszadeh [20] proposed the element free Galerkin technique 

for the fractional cable equation. Moreover, stability and conver- 

gence of this method with convergence orders of the time dis- 

crete scheme and the full discrete scheme were discussed. They 

changed the main problem with Dirichlet boundary condition to 

a new problem with Robin boundary condition. Then they show 

convergence orders of the time discrete scheme and the full dis- 

crete scheme are O(δt 1+ min { α,β} ) and O(r p+1 + δt 1+ min { α,β} ) ), re- 

spectively. To see more references in the field of fractional cable 

equation refer to Section 1 of Ref. [20] . 

The main shortcoming of mesh-based methods such as the fi- 

nite element method (FEM) [21] , the finite volume method (FVM) 

[22] and the boundary element method (BEM) [23] is that these 

numerical methods rely on meshes or elements. In the two last 

decades, in order to overcome the mentioned difficulties some 

techniques so-called meshless methods have been proposed. A 

brief review of the meshless method has been studied in [24] . 

In spite of great benefits in using the meshless weak form 

methods, there are some limitations. For example, the compli- 

cated nature of the non-polynomial shape functions may be com- 

putationally expensive to implement in a numerical integration 

scheme. On the other hand, some methods such as those that are 

based on moving least squares (MLS) and RBFs, need to determine 

a shape parameter which plays the important role in the accuracy 

of the methods. Furthermore, the resultant linear systems might 

be ill-conditioned and to overcome this defect, some regulariza- 

tion methods are needed. In the meshless method based on strong 

form, such as Kansa’s method, this RBF collocation approach is in- 

herently meshless, easy-to-program, and mathematically very sim- 

ple to learn, but its fundamental flaw is un-stability because of the 

use of the global strong form. To overcome these shortages, we 

propose a new spectral meshless radial point interpolation (SMRPI) 

method which is based on meshless radial point interpolation and 

spectral collocation techniques [25–27] . In the SMRPI method, the 

point interpolation method by the help of radial basis functions is 

proposed to construct shape functions which have Kronecker delta 

function property and are used as basis functions in the frame of 

the SMRPI. Based on the spectral methods, evaluation of high-order 

derivatives of given differential equation is easy by constructing 

and using operational matrices. The SMRPI method does not re- 

quire any kind of integration locally over small quadrature domains 

nor regularization techniques. Therefore, the computational cost of 

the SMRPI method is less expensive. 

Our aim in this work is the development of SMRPI method to 

obtain the solution of fractional cable equation with the details as 

follows. In Section 2 , we obtain a time discrete scheme to handle 

Eq. (1) . In this section, we also prove the unconditional stability 

and convergence of the time discrete scheme and prove that com- 

putational order of time discrete scheme is O(δt γ ) , 0 < γ < 1. In 

Section 3 , we introduce the SMRPI scheme and obtain the shape 

functions in SMRPI. Time discretization approximation for imple- 

mentation of the SMRPI is given in Section 4 . In Section 5 , we 

report the numerical experiments of solving Eq. (1) for three test 

problems. Finally a conclusion is given in Section 6 . 

2. The time discretization approximation 

To introduce a finite difference approximation in order to dis- 

cretize the time-fractional derivative, we need some preliminaries. 

Let us define 

t n = nδt n = 0 , 1 , 2 , . . . , K, 

where δt = T /K is the step size of time variable. The notation 

I 
γ
a + y (t) for y ( t ) ∈ L 1 ( a, b ) denotes the Riemann–Liouville fractional 

integral operator which is defined as 

I 
γ
a + y (t) = 

1 


(γ ) 

∫ t 

a 

y (s ) 

(t − s ) 1 −γ
ds, t > a, γ > 0 , (5) 

Lemma 1. (Zhuang and Liu [28] ) If y ( t ) ∈ C 2 [0, T ], then 

I 
γ
0+ y (t n +1 ) − I 

γ
0+ y (t n ) = 

δt γ


(γ + 1) 

(
y (t n +1 ) 

+ 

n −1 ∑ 

j=0 

(w j+1 − w j ) y (t n − j ) 
)

+ R n,γ , (6) 

in which 

| R n,γ | ≤ Cw n δt 1+ γ , 1 = w 0 > w 1 > . . . > w n > 0 and 

w j = ( j + 1) γ − j γ . 

Using the above notations, we have 

0 D 

1 −γ
t u ( x , t) = 

∂ 

∂t 
I 
γ
0+ u ( x , t) . (7) 

We discretize the time variable using forward finite difference re- 

lation for approximating the first-order derivative on time variable. 

So, Eq. (1) is written as 

u ( x , t n +1 ) − u ( x , t n ) 

δt 
= 

ρ1 

δt 

(
I α0+ �u ( x , t n +1 ) − I α0+ �u ( x , t n ) 

)
−ρ2 

δt 

(
I 
β
0+ u ( x , t n +1 ) − I 

β
0+ u ( x , t n ) 

)
+ f ( x , t n +1 ) . (8) 

Now from Lemma 1 , we can conclude (
1 + μ2 

)
u 

n +1 ( x ) − μ1 �u 

n +1 ( x ) = u 

n ( x ) 

+ μ1 

n −1 ∑ 

j=0 

(
λ j+1 − λ j 

)
�u 

n − j ( x ) 
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