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a b s t r a c t 

This paper considers a fractional order Rosenzweig-MacArthur (R-M) model incorporating a prey refuge. 

The model is constructed and analyzed in detail. The existence, uniqueness, non-negativity and bound- 

edness of the solutions as well as the local and global asymptotic stability of the equilibrium points are 

studied. Sufficient conditions for the stability and the occurrence of Hopf bifurcation for the fractional 

order R-M model are demonstrated. The resolution of the paradox of enrichment is investigated. The im- 

pact of fractional order and the prey refuge effects on the stability of the system are also studied both 

theoretically and by using numerical simulations. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The dynamics of prey-predator systems are active research top- 

ics in ecology and mathematical biology. One focus area is the 

study the persistence and stability of these systems [1] . Prey can 

move to areas called refuges where they are safe from their preda- 

tors and this behaviour may reduce the possibility of prey mor- 

tality [2] . Incorporating a refuge is believed to provide a more re- 

alistic prey-predator model i.e. for a number of prey populations 

some form of refuge in the ecosystem is available. Some studies 

of the dynamical behaviour of prey-predator models incorporating 

refuge include [1,3–10] . 

After killing a prey, a predator typically eats and digests its cap- 

tured food. Some models assume that this occurs at a constant rate 

[11,12] . The Rosenzweig–MacArthur (R-M) model [11,12] is based 

on the assumption that the eating and digesting process occurs at 

a non-constant rate. Studies on the R-M model include [9,13–15] . 

A R-M model normally incorporates the Holling type-II functional 

response. The Holling type-II functional response is a type of func- 

tion in which the attack rate of predator increases at a decreasing 

rate with prey density until it becomes constant due to satiation 

[16] . Rosenzweig [17,18] highlighted that increasing the carrying 
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capacity of the prey may lead to an extinction of species in the 

ecosystem. This is known as the paradox of enrichment. 

Kar [15] , considered a prey-predator model incorporating a prey 

refuge, which employs a R-M model with Holling type-II functional 

response, as follows: 

dx 

dt 
= rx 

(
1 − x 

k 

)
− β(1 − m ) xy 

1 + a (1 − m ) x 
, 

dy 

dt 
= 

cβ(1 − m ) xy 

1 + a (1 − m ) x 
− γ y. 

(1) 

All the parameters are non-negative for all time t ≥ 0. The parame- 

ters are described in Table 1 . 

In recent years, fractional-order differential equations have at- 

tracted the attention of researchers due to their ability to provide 

a good description of certain non-linear phenomena [19] . The frac- 

tional order differential equations are generalizations of ordinary 

differential equations to arbitrary (non-integer) orders. Some re- 

searchers studied the fractional order differential equations to de- 

scribe complex systems in different branches of physics, chemistry 

and engineering [20] . In the last few years, many researchers have 

also employed fractional-order biological models [5,14,21–27] . This 

is because fractional-order differential equations are naturally re- 

lated to systems with memory [5] . Many biological systems pos- 

sesses memory and the conception of fractional-order system may 

be closer to real life situations than integer-order systems. The 

advantages of fractional-order systems are that they describe the 

whole time domain for physical processes, while the integer-order 

model is related to the local properties of a certain position, and 
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Table 1 

Parameters table for the R-M model. 

Parameter Description 

x Prey population. 

y Predator population. 

r Natural growth rate of the prey. 

k Carrying capacity of the prey. 

γ Death rate of the predator. 

c Maximum value of per capita reduction rate of x due to y . 

β Attack rate. 

a Half saturation constant. 

mx Refuge protecting of the prey. 

(1 − m ) x Prey available to the predator. 
βx 

1+ ax 
Holling type-II functional response. 

they allow greater degrees of freedom in the model [28] . In [5] a 

fractional order predator-prey model with refuge was proposed 

and issues related to existence, uniqueness, non-negativity, equi- 

librium points and global stability was studied. However, the pa- 

per did not deal with R-M model as such. In this paper, we study 

a fractional order R-M model by extending the integer order model 

(1) as follows: 

c D 

αx (t) = rx 

(
1 − x 

k 

)
− β(1 − m ) xy 

1 + a (1 − m ) x 
, 

c D 

αy (t) = 

cβ(1 − m ) xy 

1 + a (1 − m ) x 
− γ y, 

(2) 

with the initial conditions 

x (0) = x 0 > 0 and y (0) = y 0 > 0 , 

where α ∈ (0, 1), m ∈ [0, 1) and 

c D 

α is the standard Caputo differen- 

tiation. All the parameters of fractional order system (2) are non- 

negative for all time t ≥ 0. The Caputo fractional derivative of order 

α is defined as [19,29] : 

c D 

α f (t) = 

1 

�(n − α) 

∫ t 

0 

( t −s ) n −α−1 f (n ) ( s ) ds , n −1 < α < n, n ∈ N . 

To the best of the authors’ knowledge, the dynamical analysis 

of a fractional-order Rosenzweig–MacArthur model incorporating 

a prey refuge has not been performed before. Motivated by these 

observations, a fractional-order Rosenzweig–MacArthur model in- 

corporating a prey refuge is proposed, and then the qualitative be- 

havior of the model (2) is analysed. The local and global stabil- 

ity of the equilibrium points of the fractional order system (2) are 

investigated as well as the emergence of Hopf bifurcation in the 

fractional order system (2) is illustrated. We show that introducing 

the fractional order to Rosenzweig–MacArthur model resolves the 

paradox of enrichment. Moreover, a suitable method introduced by 

Adams-Bashforth-Moulton is applied for the numerical simulation 

of the fractional-order system (2) to confirm the theoretical results. 

The numerical simulations focus on the influences of fractional or- 

der α and prey refuge on the population densities of both prey and 

predator. It has been shown that the dynamics of fractional order 

model (2) is more stable than its integer counterpart (1) because 

of the domain of stability in the fractional order model (2) is larger 

than the corresponding domain for integer order model (1) . 

The organization of this paper is as follows. In Section 2 , the 

existence, uniqueness, non-negativity, boundedness, stability anal- 

ysis and Hopf bifurcations of fractional order system (2) are pre- 

sented. In Section 3 , the numerical simulations are provided to ver- 

ify the theoretical results of fractional order system (2) . Finally, a 

brief conclusion of our study is given in Section 4 . 

2. Analysis 

This section studies the existence, uniqueness, non-negativity 

and boundedness of the solutions of a fractional order system (2) . 

In addition, the stability analysis and Hopf bifurcations of fractional 

order system (2) are also performed. 

2.1. Existence and uniqueness 

The sufficient condition for existence and uniqueness of the so- 

lution of a fractional order system (2) are as follows: 

Theorem 1. For each non-negative initial conditions, there exists a 

unique solution of fractional order system (2) . 

Proof. We seek a sufficient condition for existence and uniqueness 

of the solutions of fractional order system (2) in the region � × (0, 

T ] where 

� = { (x, y ) ∈ R 

2 : max (| x | , | y | ) ≤ η} . 
The approach used in [5] is adopted. Consider a mapping G (X ) = 

(G 1 (X ) , G 2 (X )) and 

G 1 (X ) = rx 

(
1 − x 

k 

)
− β(1 − m ) xy 

1 + a (1 − m ) x 
, 

G 2 (X ) = 

cβ(1 − m ) xy 

1 + a (1 − m ) x 
− γ y. 

(3) 

For any X, X̄ ∈ �, it follows from (3) that 

‖ G (X ) − G ( ̄X ) ‖ 

= 

∣∣G 1 (X ) − G 1 ( ̄X ) 
∣∣+ 

∣∣G 2 (X ) − G 2 ( ̄X ) 
∣∣

= 

∣∣∣∣r x (1 − x 

k 

)
− β(1 − m ) xy 

1 + a (1 − m ) x 
− r ̄x 

(
1 − x̄ 

k 

)
+ 

β(1 − m ) ̄x ̄y 

1 + a (1 − m ) ̄x 

∣∣∣∣
+ 

∣∣∣∣ cβ(1 − m ) xy 

1 + a (1 − m ) x 
− γ y − cβ(1 − m ) ̄x ̄y 

1 + a (1 − m ) ̄x 
+ γ ȳ 

∣∣∣∣
= 

∣∣∣r(x − x̄ ) − r 

k 
(x 2 − x̄ 2 ) 

− β(1 − m )(xy + a (1 − m ) x ̄x y − x̄ ̄y − a (1 − m ) x ̄x ̄y ) 

(1 + a (1 − m ) x )(1 + a (1 − m ) ̄x ) 

∣∣∣
+ 

∣∣∣ cβ(1 − m )(xy + a (1 − m ) x ̄x y − x̄ ̄y − a (1 − m ) x ̄x ̄y ) 

(1 + a (1 − m ) x )(1 + a (1 − m ) ̄x ) 

− γ (y − ȳ ) 

∣∣∣
= r| x − x̄ | + 

r 

k 
| (x − x̄ )(x + x̄ ) | + γ | y − ȳ | 

+ 

(1 + c) aβ(1 − m ) 2 x ̄x | y − ȳ | 
(1 + a (1 − m ) x )(1 + a (1 − m ) ̄x ) 

+ 

(1 + c) β(1 − m ) | xy − x̄ y + x̄ y − x̄ ̄y | 
(1 + a (1 − m ) x )(1 + a (1 − m ) ̄x ) 

≤ r| x − x̄ | + 

2 ηr 

k 
| x − x̄ | + γ | y − ȳ | + 

(1 + c) β

a 
| y − ȳ | 

+ βη(1 + c)(1 − m ) | x − x̄ | + βη(1 + c)(1 − m ) | y − ȳ | 
≤
(

r + 

2 rη

k 
+ βη(1 + c)(1 − m ) 

)
| x − x̄ | 

+ 

(
γ + 

(1 + c) β

a 
+ βη(1 + c)(1 − m ) 

)
| y − ȳ | 

≤ H‖ X − X̄ ‖ , 

where 

H = max 

{ 
r + 

2 rη

k 
+ βη(1 + c)(1 − m ) , 

γ + 

(1 + c) β

a 
+ βη(1 + c)(1 − m ) 

} 
. 

Thus, G ( X ) satisfies the Lipschitz condition. Consequently, the exis- 

tence and uniqueness of fractional order system (2) follows. �
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