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a b s t r a c t 

This paper is devoted to synchronization analysis of the fractional order drive-response complex net- 

work. Firstly, a fractional order drive-response networks model with in-commensurate orders is proposed. 

Moreover, on the basis of the stability theory of linear fractional-order differential equations and open- 

loop strategy, we derive a sufficient condition for the stability of the modified projective synchronization 

behavior in such drive-response complex network. Furthermore, we verify our theoretical results by nu- 

merical simulations of drive-response complex network with in-commensurate orders. 
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1. Introduction 

Complex network can describe a wide range of systems from 

nature to society. Examples cover as diverse as the Internet, scien- 

tific collaboration networks, neural networks [1–3] . Understanding 

the effect of networks on the dynamical processes taking place on 

them is a central issue [4–5] . 

Synchronization is one of the most prevalent collective dy- 

namics in complex networked systems. Synchronization in com- 

plex networks has attracted much attention recently [3–6] . Until 

now, several types of synchronization have been investigated, such 

as phase synchronization and complete synchronization [7,8] , pro- 

jective synchronization [9] and modified projective synchroniza- 

tion [10–12] . Among them, modified projective synchronization in- 

crease the difficulties of interception of outputting the chaotic se- 

cure communication more secure. Moreover, earlier works have 

found that complex network with identical order nodes can 

achieve various synchronization by effective strategies. However, 

many complex networks are not a guarantee for identical nodes. 

So it is necessary to investigate the modified projective synchro- 

nization of complex network with in-commensurate orders. 

On the other hand, fractional-order differential systems have 

been widely investigated due to their potential applications in vis- 

coelasticity, dielectric polarization, quantum evolution of complex 

systems, and many other fields. In fact, most studies to date have 

concerned integer order complex networks. The fractional order 
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complex networks generalize well-studied integer order complex 

networks. It is well known that the behavior of dynamical net- 

works with different nodes is much more complicated than the 

identical node case. 

By summarizing the previous results, it is interesting to ask if 

that the drive system is an integer order system, and the response 

dynamical networks consisting of nodes with fractional order dy- 

namics during the synchronization. To the best of our knowledge, 

no work in this aspect is available in the literature. In this paper, 

we focus on synchronization behavior of a fractional order drive- 

response complex network with in-commensurate orders. 

This paper is organized as follows. In Section 2 , some prelimi- 

naries of fractional calculus and drive-response complex networks 

with in-commensurate orders are briefly outlined. The main results 

for achieving modified projective synchronization of fractional or- 

der drive-response complex networks are given in Section 3 . In 

Section 4 , illustrative examples are shown to support the theory 

results. Concluding remarks are presented in Section 5 . 

2. Preliminaries and model description 

2.1. Definitions of and stability theorems fractional system 

There exist many definitions for fractional derivatives [13] . The 

Riemann–Liouvile definition and the Caputo definition are the two 

most commonly used ones. In this paper, the Caputo definition is 

adopted for derivative, which is introduced briefly below: 

D 

α
∗ f (t) = 

1 

�(n − α) 

∫ t 

t 0 

( t − τ ) 
α−n +1 

f (n ) ( τ ) dτ, (1) 

https://doi.org/10.1016/j.chaos.2018.02.014 

0960-0779/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.chaos.2018.02.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2018.02.014&domain=pdf
mailto:yanglixin@sust.edu.cn
mailto:jun.jiang@xjtu.edu.cn
https://doi.org/10.1016/j.chaos.2018.02.014


48 L.-x. Yang, J. Jiang / Chaos, Solitons and Fractals 109 (2018) 47–52 

for n − 1 ≤ α < n , where �( · ) is the Gamma modified. 

�(s ) = 

∫ ∞ 

0 

t s −1 e −t dt. (2) 

Consider the following fractional order system 

D 

q X = f (X ) or D 

q X = AX. (3) 

Where X ∈ R n , A ∈ R n × n , 0 < q ≤ 1. 

Lemma 1. (See [13] ). If A is a constant matrix, then the au- 

tonomous linear fractional order system (3) is asymptotically stable 

if | arg ( λi (A )) | > qπ/ 2 . 

Throughout this paper, " q -stable matrix A " means that all 

eigenvalues of matrix A satisfy condition (3) . 

2.2. Network model 

Consider the fractional order drive-response complex dynamical 

networks as follows: 

˙ s (t) = f (s (t)) , 

D 

q 
∗x i (t) = f ( x i (t)) + 

n ∑ 

j=1 

c i j �x j (t) + u i i = 1 , 2 , ..., N. (4) 

Where 0 < q ≤ 1 is the fractional order, x i = ( x i 1 , x i 2 , ..., x in ) 
T ∈ R n 

denotes the state vector of the i th node, f ( x i ( t )) are n × 1 con- 

tinuous differentiable functions, which describes the dynamics of 

the individual nodes, � is the inner coupling matrix, C = ( c i j ) N×N 

is the outer coupling matrix representing the topological struc- 

ture of the network, where c ij is defined as follows: if there ex- 

ists a link between h k 
i j 

= 0 node and j th node ( i � = j ), then c ij � = 0; 

otherwise, c i j = c ji = 0 , and the diagonal elements are given by 

c ii = − ∑ N 
j=1 ,i � = j c i j , which means that the nodes are diffusively cou- 

pled. 

Remark 1. In the literature, both the goal node and response net- 

work are described by integer order differential equations or frac- 

tional order differential equations, in this paper, we show that the 

drive system is integer order equation, but the response network is 

a fractional order dynamical network, in which the state variables 

of each node evolve with time according to a set of fractional or- 

der differential equations. That is to say, our model enlarges the 

drive-response complex network model. 

In order to get the error dynamical complex network, the error 

term is defined as following: 

e i (t) = x i (t) − �(t ) s (t ) , i = 1 , 2 , ..., N (5) 

Where �(t) = diag (λ(t) , ..., λ(t)) T denotes scaling matrix, s ( t ) 

means the goal orbit. For simplicity, we define a new matrix P (t) = 

�(t) s (t) . 

According to the above definition, the error dynamical system 

is controlled by the following equation: 

D 

q 
∗e i (t) = f ( x i (t)) + 

N ∑ 

j=1 

c i j x j (t) − D 

q 
∗P (t) + u i (t) 

i = 1 , 2 , ..., N . (6) 

The goal of this study is to design suitable controller u i ( t ) to 

synchronize the network onto a given orbit. 

The vector modified f ( x i ( t )) can be linearized as follows in the 

neighborhood of the goal value via Taylor expansions: 

f ( x i (t)) = f (P (t)) + 

∂ f 

∂P 
( x i − P (t)) + · · · , i = 1 , 2 , ..., N . (7) 

Substituting in Eq. (7) , one can obtain 

D 

q 
∗e i (t) = f (P (t)) + 

N ∑ 

j=1 

c i j e j (t) − D 

q 
∗P (t) + H e i (t) + u i (t) (8) 

where H = 

∂ f 
∂P 

is Jacobian matrix of with respect to P ( t ). 

Our aim is to design appropriate controllers such that the drive- 

response network (4) with different orders can achieve the modi- 

fied projective synchronization. 

3. Synchronization analysis 

In this section, we investigate the modified projective syn- 

chronization of fractional order drive-response network defined by 

Eq. (4) and design the controller via open-loop control strategy. 

Before beginning our main results, some lemmas (see Appendix 

A for details) are needed to derive the main results. 

Theorem 1. If the coupling matrix C of the drive-response network 

(4) is symmetric and diffusive, the matrix H � I N + C � I n is q-stable 

if and only if matrix H is q -stable. 

Proof : we prove sufficiency first. 

Suppose matrix H is q -stable and ɛ 1 , ..., ɛ n are the eigen- 

value of H , then | arg ( ε i ) | > 

qπ
2 for i = 1 , ..., N. Let λ1 , ..., λN de- 

note the eigenvalues of matrix C . Since this matrix is symmet- 

ric and real, λi ∈ R , one can sort them out in decreasing order as 

0 = λ1 ≥ λ2 ≥ ... ≥ λN . In addition, one can obtain λi + ε j for some 

i = 1 , 2 , ..., N, j = 1 , 2 , ..., n are eigenvalues of matrix H � I N + C � I n . 

From Lemma 2 , | arg ( λi + ε j ) | > 

qπ
2 . Based on Lemma 4 , H � I N + 

C � I n is q -stable. 

In the following, we should proof necessity. 

Assume that H is not q-stable. Thus, there exists j ∈ {1, 2, ..., n } 

such that | arg ε j | ≤ qπ
2 . From Lemma 3 , matrix C has at least one 

null eigenvalue, so ρi, j = λi + ε j = ε j is an eigenvalue of H � I N + 

C � I n such that arg | ρi, j | ≤ qπ
2 , as a consequence, H � I N + C � I n is 

not q -stable. 

Hereafter, we give a useful theorem to characterizes a suffi- 

cient condition for fractional order drive-response complex net- 

work (4) to achieve modified projective synchronization. 

Theorem 2. For a certain fractional order q ∈ (0, 1] and scaling ma- 

trix �( t ) , the fractional order drive-response network (4) can achieve 

modified projective synchronization via the following controllers. 

u i (t) = D 

q 
∗P (t) − f (P (t)) − M e i (t) i = 1 , 2 , ..., N . (9) 

Proof : According to errors e i (t) = x i (t) − �(t ) s (t ) = x i (t) −
P (t) , error dynamical system can be described by: 

D 

q 
∗e i (t) = f ( x i (t)) + 

N ∑ 

j=1 

c i j e j (t) − D 

q 
∗P (t) + u i (t) 

i = 1 , 2 , ..., N . (10) 

We note that, the vector modified f ( x i ( t )) is linearized as follows 

in the neighborhood of the goal value via Taylor expansions: 

f ( x i (t)) = f (P (t)) + 

∂ f 

∂P 
( x i − P (t)) + · · · , i = 1 , 2 , ..., N . (11) 

Keeping the first-order terms in Eq. (11) and substituting in 

Eq. (10) , we have 

D 

q 
∗e i (t) = f (P (t)) + 

N ∑ 

j=1 

c i j e j (t) + D 

q 
∗P (t) + H e i (t) − f (P (t)) 

− M e i (t) − D 

q 
∗P (t) 

= H e i (t) + 

N ∑ 

j=1 

c i j e j (t) − M e i (t) . (12) 
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