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a b s t r a c t 

In this paper, a new approach to control continuous time chaotic systems with an unknown governing 

equation and limitation on the measurement of states, has been investigated. In many chaotic systems, 

disability to measure all of the states is a usual limitation, like in some economical, biological and many 

other engineering systems. Takens showed that a chaotic attractor has an astonishing feature in which 

it can embed to a mathematically similar attractor by using time series of one of the states. The new 

embedded attractor saves much information from the original attractor. This phenomenon has been de- 

ployed to present a new way to control continuous time chaotic systems, when only one of the states of 

the system is measurable and the system model is not also available. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

The power of system dynamics in predicting and controlling 

many systems urges us to study more and more in this field [1] . 

Chaos as a widespread phenomenon in system dynamics can en- 

danger many systems. We have introduced a new method to con- 

trol chaotic systems with limitation on measuring the states, and 

an unknown governing equation. Proposing a control method for 

these kinds of systems is a big leap toward controlling continuous 

time chaotic systems, because there are indeed numerous chaotic 

systems in which their states may not be measured practically, 

like many biological, economical and many other engineering-type 

chaotic systems [2–5] . The proposed method can also expose po- 

tentially a new vision for controlling high-dimensional chaotic sys- 

tems in which usually the model of the system is not available and 

only a few states of the system can be available. 

Chaos control in continuous time systems has had some many 

breakthroughs during the last decades. The delayed feedback 

method as one of the best control methods can be applied to many 

chaotic systems [6] . But these methods simply assumed the avail- 

ability or at least observability of all of the states and a known 

governing equation on the dynamics of the system. The method 

presented here eradicates these assumptions. One measurable state 

is enough in this method to systematically design a proper control 

law. 
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The control method presented here is backed by works done by 

Takens [7] on chaotic attractors. Takens theorem guarantees preser- 

vation of the topological characteristics of an embedded chaotic at- 

tractor. The embedded attractor is made up by time series of mea- 

surements of a single measurable state. This is our clue to elicit 

some information from an unknown dynamical system. 

The embedded chaotic system is not only topologically similar 

to the original systems but also can preserve dynamical character- 

istics like unstable orbits or fixed points. Our idea is to stabilize 

unstable fixed points (UFP) in the Poincare map of the embedded 

attractor and find a proper control signal for the original system 

with special considerations. Controlling chaotic systems with these 

strict conditions (unknown dynamics and limitation on measuring 

the states) has been previously done for discrete-time systems [8] . 

Working on continuous time systems unlike discrete-time systems 

has much more complexity in Takens transformation, identification 

process and in designing controller law which is discussed in detail 

in the following sections. 

In the second section the embedding properties, Poincare map 

of the embedded chaotic attractor and controlling the original sys- 

tem have been explained in detail. In the third section, the proce- 

dure has been examined on Duffing and chaotic pendulum equa- 

tions and the results have been reported. Finally, in the last sec- 

tion, a brief conclusion has been presented. 

2. Problem statement 

The problem which has been solved in this article is control- 

ling a continuous time chaotic system with an unknown governing 
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Fig. 1. Steps toward controlling the original system. 

equation when at least one of the states of the system is measur- 

able. We construct a new chaotic attractor by using time series of 

the measurable state through Takens embedding theory. After gen- 

erating a new chaotic attractor, we made the Poincare map of the 

reconstructed chaotic system. Then we found the unstable fixed 

points of the obtained Poincare map and finally after designing a 

control law for the Poincare map we apply a proper control signal 

to the original system. Fig. 1 displays different steps which should 

be taken to control the chaotic system. 

2.1. Embedding new attractor 

The disability to measure all of the states and being blind to the 

dynamics of the system urges us to use Takens embedding the- 

ory. This theory uses time series of a single measurable state to 

reconstruct new chaotic attractor which preserves differential in- 

formation of the unknown chaotic attractor. Unfortunately, Takens’ 

theory assumes that there are infinite noise-free data. But in real 

systems, we have limited and noisy data [9,10] . So, special consid- 

eration should be taken into account in choosing the embedding 

properties. If there is an unknown governing like Eq. (1) , with un- 

known k and g i on the original system, then Takens transformation, 

φ is defined as Eq. (2) : ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ x 1 (t) = g 1 ( x 1 , . . . , x k ) 
˙ x 2 (t) = g 2 ( x 1 , . . . , x k ) 

. . . 
˙ x k (t) = g k ( x 1 , . . . , x k ) 

(1) 

x ( j) : 

⎡ 

⎢ ⎢ ⎣ 

x 1 (t) 
x 2 (t) 
. . . 
x k (t) 

⎤ 

⎥ ⎥ ⎦ 

φ→ 

⎡ 

⎢ ⎢ ⎣ 

x j (t) 
x j (t − τ ) 
. . . 
x j (t − nτ ) 

⎤ 

⎥ ⎥ ⎦ 

(2) 

In Eq. (2) the first vector consists of the states of the origi- 

nal system and the second vector shows the states of the recon- 

structed system where x j is the measurable state of the original 

system. The other parameters τ and n are pretty much crucial in 

quality of the Takens transformation. Delayed time ‘ τ ’ is usually set 

to be unity in discrete time systems. But finding proper τ is one 

of the most important parts of the finding correct transformation 

in continuous time systems. In this paper we do not concentrate 

on finding these parameters ( τ , n ) and we have used studies done 

before on this topic [11–13] . 

2.2. Poincare map of the reconstructed system 

To control the original system, first, we have to control the re- 

constructed system. The governing equation on the reconstructed 

system is as Eq. (3) , ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ x j (t) = f ( x j (t) , x j (t − τ ) , . . . , x j (t − nτ )) 
˙ x j (t − τ ) = f ( x j (t − τ ) , x j (t − 2 τ ) , . . . , x j (t − (n + 1) τ )) 

. . . 
˙ x j (t − nτ ) = f ( x j (t − nτ ) , x j (t − (n + 1) τ ) , . . . , x j (t − 2 nτ )) 

(3) 

Eq. (3) is a delayed differential equation and identification of 

this equation is pretty much complex. To skip this identification 

process we have employed Poincare map of the system. 

2.3. Controlling the Poincare map of the reconstructed system 

Skipping identification of ‘ f ’ function in Eq. (3) leads us to use 

the Poincare map of the reconstructed system for the controlling 

purposes. To design a linear controller for the Poincare map, a lin- 

earized Poincare map defined near the unstable fixed point (UFP) 

of the reconstructed system is utilized. So the Jacobian matrix of 

the Poincare map calculated on the UFP should be found numeri- 

cally. The linearization of Poincare map on the UFP, denoted by X f , 

results in the following equation, ⎛ 

⎜ ⎜ ⎝ 

⎡ 

⎢ ⎢ ⎣ 

y 1 (k + 1) 
y 2 (k + 1) 
. . . 
y p (k + 1) 

⎤ 

⎥ ⎥ ⎦ 

− X f 

⎞ 

⎟ ⎟ ⎠ 

≈ [ J ] 

⎛ 

⎜ ⎜ ⎝ 

⎡ 

⎢ ⎢ ⎣ 

y 1 (k ) 
y 2 (k ) 
. . . 
y p (k ) 

⎤ 

⎥ ⎥ ⎦ 

− X f 

⎞ 

⎟ ⎟ ⎠ 

+ u (4) 

where [ J ] is the Jacobian matrix, and u is the control signal which 

is designed by linear feedback method. ‘ p’ is the dimension of the 

Poincare map, and y (k ) = [ y 1 (k ) , . . . , y p (k )] T is the state vector of 

the system defined by the Poincare map. Note that the linear ap- 

proximation ( Eq. (4) ) is valid only in a small vicinity of the UFP 

so the corresponding control law should be applied when the sys- 

tem is close enough to the UFP. The form of the control signal is 
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