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a b s t r a c t 

In the present paper, Thiele modulus (TM) for a catalytic reaction with the anomalous diffusion of a 

reagent in a catalyst pellet is introduced. Different cases of the TM are considered related to the anoma- 

lous diffusion process governed by a diffusion equation with the space-fractional, time-fractional, and 

space-time fractional derivatives. In addition, each fractional derivative is used according to the Caputo 

and the Riemann–Liouville definitions. Closed-form expressions of the TM for each definition of the frac- 

tional derivative are provided. For the time-fractional derivative, the TM is obtained under the assumption 

of the reaction dynamics nonlinearity. We demonstrate and critically discuss the applicability of the TM 

obtained for the reaction-diffusion equation with non-integer order derivatives to the evaluation of the 

parameters of the heterogeneous catalytic process. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Thiele modulus provides a relationship between a heteroge- 

neous catalytic reaction rate and a size of a catalyst pellet [1] . An 

overall process rate is defined by a reagent diffusion rate in the 

pores of a catalyst pellet to a catalyst surface and a chemical re- 

action rate on a surface of a catalyst. Therefore, depending on the 

size of a catalytic pellet the process rate is different because for 

larger catalyst pellet the longer distance is traveled by a reagent 

in a catalyst pores. Thiele modulus provides a ratio between the 

reaction rate and the diffusion rate in a catalyst pellet. Based on 

the value of the Thiele modulus it may be concluded on the cata- 

lyst surface utilization during a catalytic reaction, particularly, the 

lower is the value of the Thiele modulus the higher is the degree 

of a catalyst utilization and vice versa [2] . 

The concept of the Thiele modulus is widely used in R&D and 

its application may not be limited only to the heterogeneous cat- 

alytic systems. It may be also used in electrochemical reactions 

on the electrodes [3] . In recent years, a number of Thiele mod- 

uli approaches having regard to different catalyst characteristics 

and catalytic reaction kinetics have been developed. For instance, 

the Thiele moduli accounting for the fractal structure of the cat- 

alyst pores [4] , catalyst pellet shape [5] , catalyst pore size distri- 

bution [6] , a transition between the orders of the reaction kinet- 

ics [7] have been employed. It is worth noting that in engineering 

systems, the effectiveness factor is often used except the Thiele 
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modulus [8] . However, the Thiele modulus is a ground for evalu- 

ating the effectiveness factor. The effectiveness factor is connected 

to the Thiele modulus by a simple relation, which may be approx- 

imated as follows [9] : tanh ( T M ) 
T M 

. The Thiele modulus, as well as the 

effectiveness factor, allow one to evaluate the main technical pa- 

rameters of the heterogeneous catalytic reactor, e.g. reactor length, 

catalyst mass, reactor productivity [10] . 

For the derivation of the Thiele modulus, the diffusion of 

reagents in a catalyst pellet is usually considered as standard Fick- 

ian [11] . However, the anomalous diffusion in various systems in- 

cluding solid porous media has been identified recently [12–16] . 

The anomalous diffusion has been observed in spatial [17] , tem- 

poral [18] , and spatiotemporal domains [19] . Moreover, one cer- 

tain physical reason for the anomalous diffusion appearance does 

not exist [20] . Therefore, the anomalous diffusion behavior may be 

potentially discovered in any system including the reagent trans- 

port in pelletized catalysts. Contrary to the standard diffusion, the 

anomalous diffusion is typically described by the equation that 

contains the fractional-order derivatives. Application of the frac- 

tional derivatives originates different mass transfer kinetics com- 

paring to the standard diffusion and, as a result, different relation 

between a reaction rate and mass transfer rate in a catalyst pellet. 

Recently, several attempts to investigate the heterogeneous re- 

action systems with regard to the anomalous diffusion has been 

made both, theoretically and experimentally [21–23] . In addition, 

the reaction-diffusion system with the fractional derivatives in a 

porous media has been theoretically revisited [24] . In the present 

paper, we develop the Thiele modulus for a reaction-diffusion sys- 

tem with a fractional derivative used under different definitions. 
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Here, we consider the time-fractional and the space-fractional as 

well as a more general space-time fractional case of the anomalous 

reaction diffusion. For the purpose of the present paper, the time- 

fractional derivative in the fractional reaction-diffusion equation is 

used under the assumption that the chemical reaction kinetics is 

also time-fractional and the reagent concentration evolves in time 

according to the non-exponential law. 

2. Preliminaries 

A chemical reaction accompanied by a mass transfer process in 

the pores of a catalyst is usually described by a reaction-diffusion 

equation: 

∂C 

∂t 
= D · ∂ 2 C 

∂ x 2 
− k · C (1) 

where C is concentration, mole/cm 

3 ; t is time, sec; D is a diffu- 

sion coefficient, cm 

2 /sec; x is a space coordinate, cm; k is a first- 

order reaction constant, sec −1 . In the present paper, for the sake of 

simplicity, we use a chemical reaction of the first order. Evidently, 

using the chemical reaction of different order leads to the same 

results for the TM corrected by the reaction order. 

In the case, if the derivatives in Eq. (1) are replaced by the frac- 

tional derivatives, a space-time fractional reaction-diffusion equa- 

tion may be obtained: 

∂ αC 

∂ t α
= K · ∂ βC 

∂ x β
− k α · C (2) 

where α and β are the fractional order of the temporal and spa- 

tial derivatives respectively ( α∧ β ∈ (0, 2)), K is a fractional diffu- 

sion coefficient, cm 

β /sec α; k is a fractional first-order reaction rate 

constant, sec −α . Evidently, for α = 1 and β = 2, Eq. (2) reduces to 

Eq. (1) . Fractional reaction rate in Eq. (2) arises due to the fol- 

lowing considerations. It should be noted that a simple replace- 

ment of the temporal derivative in Eq. (1) by the time-fractional 

derivative is impossible because such fractional reaction-diffusion 

equation lacks physical meaning. The composition of the fractional 

(diffusion) and non-fractional (reaction) process rates contradicts 

the mass conservation principle. For the time-fractional diffusion, 

the fractional reaction kinetics should be introduced, which for the 

first-order chemical reaction may be described by the following ex- 

pression [25] : 

d αC 

d t α
= −k α · C (3) 

In the present paper, we consider the fractional derivatives in 

Eq. (2) according to the Caputo notation [26] : 

∂ αC 

∂ t α
= 

1 

Г( m − α) 
·
∫ t 

0 
( t − τ ) 

m −α−1 · ∂ m C 

∂ τ m 

dτ (4) 

and according to the Riemann–Liouville (RL) notation [27] : 

∂ αC 

∂ t α
= 

1 

Г( m − α) 
· ∂ m C 

∂ τ m 

·
∫ t 

0 
( t − τ ) 

m −α−1 dτ (5) 

where m is a constant that satisfies the condition m = 1 ⇔ α ∈ 

( 0 , 1 ) ∨ β ∈ ( 0 , 1 ) ∧ m = 2 ⇔ α ∈ ( 1 , 2 ) ∨ β ∈ ( 1 , 2 ) , τ is the shift, 

and Г is the Euler gamma function. Caputo and RL fractional 

derivatives have different properties and, thus, the TM obtained 

under different notations of fractional derivatives is also different. 

3. Thiele modulus derivation 

In a steady state ( ∂C 
∂t 

= 0 ) Eq. (1) reduces to the following rela- 

tion: 

D · ∂ 2 C 

∂ x 2 
− k · C = 0 (6) 

For the boundary conditions given by Thiele [1] , the solution of 

Eq. (6) may be expressed as a Thiele modulus � [28] : 

� = L ·
√ 

k · C S 
D 

(7) 

where L is a diffusion length, cm; C S is a surface concentra- 

tion, mole cm 

3 . Alternatively, the Thiele modulus sometimes is ex- 

pressed irrespectively to the surface concentration [29] : 

� = 

√ 

k · L 

D 

(7a) 

3.1. Thiele modulus for the time-fractional diffusion equation 

For β = 2, Eq. (2) corresponds to the time-fractional diffusion 

equation: 

∂ αC 

∂ t α
= K · ∂ 2 C 

∂ x 2 
− k α · C (8) 

If the fractional derivative in Eq. (8) is used in the Caputo sense, 

in a stationary case Eq. (8) simplifies as follows: 

K · ∂ 2 C 

∂ x 2 
− k α · C = 0 (9) 

Similarly to the standard TM, the TM for the time-fractional dif- 

fusion ( �γ ) based on Eq. (9) may be obtained: 

�γ = L ·
√ 

k α · C S 
K 

(10) 

Eq. (10) is quite similar to the results presented in Ref [22] . 

The dimension of the TM in Eq. (10) corresponds to the dimen- 

sion of the standard Thiele modulus due to the reduction of the 

fractional dimensions of the k α and K constants. It is also worth 

noting that the scaling relations between the fractional-order and 

usual integer-order diffusion coefficient and the reaction rate con- 

stant may be obtained. The corresponding scaling for the fractional 

reaction rate constant is given by: 

k α = k · t α−1 
1 · �( 2 − α) (11) 

where t 1 is a time value identical to 1 s. The physical sense of 

Eq. (11) reflects the degree of the deviation of the anomalous ki- 

netic from the usual one. Eq. (11) is obtained by expressing the 

ratio between the fractional reaction kinetic equation ( Eq. (3) ) and 

the usual reaction kinetic equation ( Eq. (3) with α = 1) with re- 

spect to the unit time value equal to 1 s: 

dC 

dt 

/ 

d αC 

d t α
= 

k · C 

k α · C 
= 

t α−1 · �( 2 − α) · k 

k α
(11a) 

Assuming the equality of dC 
dt 

/ d 
αC 

d t α
and substituting t = t 1 the 

fractional reaction rate constant is expressed by Eq. (11) . For the 

fractional diffusion coefficient, the similar relation may be ob- 

tained: 

K = D · t 1 −α
1 · �( 1 + α) (12) 

However, while the physical sense of the relation between the 

fractional and the usual diffusion coefficient is clear enough, the 

situation may be not as simple as for the reaction rate constant. 

Scaling provided by Eq. (12) is based on the assumption of the 

mean square displacement equality for the standard and fractional 

diffusion process. However, for different physical models of the 

anomalous diffusion, which result in the fractional diffusion equa- 

tion, the expression of the mean square displacement is also dif- 

ferent [30] . Here, we use the expression for the mean square dis- 

placement derived for the continuous time random walk model of 
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