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a b s t r a c t 

In this paper, investigation is made on the coupled variable-coefficient fourth-order nonlinear Schrödinger 

equations, which describe the simultaneous propagation of optical pulses in an inhomogeneous optical 

fiber. Via the generalized Darboux transformation, the first- and second-order rogue wave solutions are 

constructed. Based on such solutions, effects of the group velocity dispersion coefficient and the fourth- 

order dispersion coefficient on the rogue waves are graphically analyzed. The first-order rogue waves with 

the eye-shaped distribution, the interactions between the first-order rogue waves with solitons, and the 

second-order rogue waves with one highest peak and with the triangular structure are displayed. When 

the value of the group velocity dispersion coefficient or the fourth-order dispersion increases, range of 

the first-order rogue wave increases. Composite rogue waves are obtained, where the temporal separation 

between two adjacent rogue waves can be changed if we adjust the group velocity dispersion coefficient 

and fourth-order dispersion coefficient. Periodic rogue waves are presented. Periods of such rogue waves 

decrease with the periods of the group-velocity dispersion and fourth-order dispersion coefficient de- 

creasing. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Rogue waves, which have much larger amplitudes than the av- 

erage wave crests around them [1] , have been found to unpre- 

dictably appear on the ocean surfaces [2,3] . Apart from the ocean, 

rogue waves have been found in the optical fibers [4–8] . In such 

photonic crystal fibers as the mode-locked fiber lasers, fiber Raman 

amplifiers and whispering-gallery-mode resonators, experimental 

and theoretical investigations on the rogue waves have been done 

[5–7] . The same as the solitons and breathers [9,10] , rogue waves 

have been seen to be modeled by the nonlinear Schrödinger (NLS) 

equation related to the group velocity dispersion (GVD) and self- 

phase modulation, which describes the evolution of a weakly non- 

linear wave packet in the deep water and a picosecond optical 

pulse propagation in the nonlinear optical fiber [4,11,12] . 

Coupled NLS-type equations have been seen to describe the 

propagation of the multiple optical waves in the nonlinear media 

[13–16] . When the inhomogeneous optical fibers are involved, it 

has been thought that the variable-coefficient NLS equations are 

more precise than their constant-coefficient versions [17] . Rogue 

waves for the coupled variable-coefficient NLS equations and cou- 
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pled variable-coefficient Hirota equations have been investigated 

[18,19] . For the simultaneous propagation of nonlinear waves in the 

inhomogeneous optical fiber, people have reported the following 

coupled variable-coefficient fourth-order NLS equations [20,21] : 

iq j,t + σ (t) q j,xx +μ(t) q j 

2 ∑ 

l=1 

| q l | 2 +γ1 (t) q j,xxxx + γ2 (t) q j 

2 ∑ 

l=1 

| q l,x | 2 

+ γ3 (t) q j,x 

2 ∑ 

l=1 

q l q 
∗
l,x + γ4 (t) q j,x 

2 ∑ 

l=1 

q ∗l q l,x + γ5 (t) q j,xx 

2 ∑ 

l=1 

| q l | 2 

+ γ6 (t) q j 

2 ∑ 

l=1 

q ∗l q l,xx + γ7 (t) q j 

2 ∑ 

l=1 

q l q 
∗
l,xx + γ8 (t) q j 

( 2 ∑ 

l=1 

| q l | 2 
)2 

= 0 , ( j = 1 , 2) , (1) 

where q 1 ( x, t ) and q 2 ( x, t ) denote the complex envelopes of two 

field polarization components, the subscripts x and t represent the 

partial derivatives with respect to the normalized propagation dis- 

tance and retarded time respectively, σ ( t ) denotes the GVD coeffi- 

cient, μ( t ) is related to the self-phase modulation coefficient, γ 1 ( t ) 

is the fourth-order dispersion coefficient, γ α( t )’s (α = 2 , · · · , 7) 

denote the cubic nonlinear coefficients, γ 8 ( t ) is the quintic 

nonlinear coefficient, and “∗ ” represents the complex conjugate. 

Bound-state solitons and interactions between the two solitons for 
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Eqs. (1) have been discussed via the Hirota method [20] . Lax pair 

and dark–dark solitons for Eqs. (1) have been reported via the bi- 

nary Darboux transformation [21] . 

Different from those in Ref. [21] , we will construct the Dar- 

boux transformation (DT) and generalized DT (GDT) for Eqs. (1) in 

Section 2 . In Section 3 , the first- and second-order rogue wave so- 

lutions for Eqs. (1) will be acquired via the GDT. Based on such so- 

lutions, interactions between the rogue waves and solitons, com- 

posite and periodic rogue waves will be graphically analyzed in 

Section 4 . Our conclusions will be given in Section 5 . 

2. DT and GDT for Eqs. (1) 

According to the Ablowitz–Kaup–Newel–Segur (AKNS) system 

[22] , Lax pair for Eqs. (1) can be cast into the following form 

[21] : 

�x = U�, �t = V �, (2) 

where � = (�1 , �2 , �3 ) 
T is the vector eigenfunction, the super- 

script T denotes the transpose for a vector, �1 , �2 and �3 are the 

scalar eigenfunctions with respect to λ, x and t , and matrices U 

and V are written in the forms of 

U = 

( −iλ q 1 q 2 
−q ∗1 iλ 0 

−q ∗2 0 iλ

) 

, V = 

( 

v 11 v 12 v 13 

v 21 v 22 v 23 

v 31 v 32 v 33 

) 

, (3) 

with λ being the spectral parameter, and 

v 11 = 8 iγ1 (t) λ4 − 2 i 

[ 
σ (t) + 2 γ1 (t) 

2 ∑ 

l=1 

| q l | 2 
] 
λ2 + 2 γ1 (t) 

×
2 ∑ 

l=1 

(q ∗l q l,x − q l q 
∗
l,x ) λ − iγ1 (t) 

[ 2 ∑ 

l=1 

| q l,x | 2 

−
2 ∑ 

l=1 

(q ∗l q l,xx + q l q 
∗
l,xx ) − 3 

( 2 ∑ 

l=1 

| q l | 2 
)2 ] 

+ iσ (t) 
2 ∑ 

l=1 

| q l | 2 , 

v 1 ,s = −8 γ1 (t) q s −1 λ
3 − 4 iγ1 (t ) q s −1 ,x λ

2 + 2 

[ 
σ (t ) q s −1 

+ γ1 (t) q s −1 ,xx + 2 γ1 (t) q s −1 

2 ∑ 

l=1 

| q l | 2 
] 
λ + iγ1 (t) 

[ 
q s −1 ,xxx 

+3 q s −1 ,x 

2 ∑ 

l=1 

| q l | 2 + 3 q s −1 ,x 

2 ∑ 

l=1 

q ∗l q l,x 
] 

+ iσ (t) q s −1 ,x , 

v s,s = −8 iγ1 (t) λ4 +2 i 

[ 
σ (t) + 2 γ1 (t) | q s −1 | 2 

] 
λ2 + 2 γ1 (t)(q s −1 q 

∗
s −1 ,x 

−q ∗s −1 q s −1 ,x ) λ − 3 iγ1 (t) | q s −1 | 2 
2 ∑ 

l=1 

| q l | 2 + iγ1 (t) 
[ 
| q s −1 ,x | 2 

−q s −1 q 
∗
s −1 ,xx − q ∗s −1 q s −1 ,xx 

] 
− iσ (t) | q s −1 | 2 , 

v 23 = 4 iγ1 (t) q ∗1 q 2 λ
2 + 2 γ1 (t)(q ∗1 ,x q 2 − q ∗1 q 2 ,x ) λ

−3 iγ1 (t) q ∗1 q 2 
2 ∑ 

l=1 

| q l | 2 + iγ1 (t)(q 2 ,x q 
∗
1 ,x − q ∗1 q 2 ,xx − q 2 q 

∗
1 ,xx ) 

−iσ (t) q ∗1 q 2 , 

v 32 = −v ∗23 , v s, 1 = −v ∗1 ,s , (s = 2 , 3) . 

It can be checked that the compatibility condition U t − V x + UV −
V U = 0 is equivalent to Eqs. (1) under the constraints 

μ(t) = 2 σ (t) , γ2 (t) = 2 γ1 (t) , γ3 (t) = 2 γ1 (t) , γ4 (t) = 6 γ1 (t) , 

γ5 (t) = 4 γ1 (t) , γ6 (t) = 4 γ1 (t) , γ7 (t) = 2 γ1 (t) , γ8 (t) = 6 γ1 (t) . 

In the following, we will construct the DT and generalized DT 

for Eqs. (1) . Under the transformation, 

�[1] = M 

[1] �, (4) 

Lax Pair (2) can be transformed into 

�[1] 
x = U 

[1] �[1] , U 

[1] = M 

[1] 
x (M 

[1] ) −1 + M 

[1] U(M 

[1] ) −1 , (5a) 

�[1] 
t = V 

[1] �[1] , V 

[1] = M 

[1] 
t (M 

[1] ) −1 + M 

[1] V (M 

[1] ) −1 , (5b) 

where U 

[1] or V 

[1] has the same form as that of U or V with q j and 

q ∗
j 

replaced by q 
[1] 
j 

and q 
[1] ∗
j 

, respectively, [ k ] (k = 0 , 1 , 2 , 3 , · · · ) 
represents the k th iteration, �[1] is a 3 × 1 matrix, M 

[1] , U 

[1] and 

V 

[1] are all the 3 × 3 nonsingular matrices, and “−1 ” denotes the 

matrix inverse. From Expressions (5) , we can obtain 

U 

[1] 
t −V 

[1] 
x + U 

[1] V 

[1] −V 

[1] U 

[1] = M 

[1] (U t −V x + U V − V U )(M 

[1] ) −1 , 

(6) 

which implies that Lax Pair (2) keeps invariant under Transforma- 

tion (4) . We need to acquire a matrix M 

[1] such that U 

[1] or V 

[1] , 

respectively, possesses the same form of U or V , while ( q 1 , q 2 ) in U 

or V is mapped into (q 
[1] 
1 

, q 
[2] 
2 

) in U 

[1] or V 

[1] . 

The DT matrix M 

[1] for Eqs. (1) has the form of [23] 

M 

[1] = λI − H �H 

−1 , (7) 

with 

H = 

⎛ 

⎜ ⎝ 

ϕ 11 −ϕ 

∗
21 −ϕ 

∗
31 

ϕ 21 ϕ 

∗
11 0 

ϕ 31 0 ϕ 

∗
11 

⎞ 

⎟ ⎠ 

, � = 

( 

λ1 0 0 

0 λ∗
1 0 

0 0 λ∗
1 

) 

, (8) 

where λ1 is a given parameter to construct the first-order DT, I is a 

3 × 3 identity matrix, H is the 3 × 3 nonsingular matrix, the eigen- 

function ( ϕ 11 , ϕ 21 , ϕ 31 ) 
T is the vector solution of Lax Pair (2) at 

λ = λ1 , ϕ 11 , ϕ 21 and ϕ 31 are the scalar functions with respect to 

x and t . Therefore, the first-order DT for Eqs. (1) can be indicated 

as 

q [1] 
1 

= q [0] 
1 

− 2 i 
(λ1 − λ∗

1 ) ϕ 11 ϕ 

∗
21 

| ϕ 11 | 2 + | ϕ 21 | 2 + | ϕ 31 | 2 , (9a) 

q [1] 
2 

= q [0] 
2 

− 2 i 
(λ1 − λ∗

1 ) ϕ 11 ϕ 

∗
31 

| ϕ 11 | 2 + | ϕ 21 | 2 + | ϕ 31 | 2 , (9b) 

where q 
[0] 
1 

and q 
[0] 
2 

are the seed solutions for Eqs. (1) , q 
[1] 
1 

and 

q 
[1] 
2 

denote the first-order DT solutions for Eqs. (1) . Similarly, the 

second-order DT for Eqs. (1) can be obtained as 

q [2] 
1 

= q [1] 
1 

− 2 i 
(λ2 − λ∗

2 ) ϕ 12 ϕ 

∗
22 

| ϕ 12 | 2 + | ϕ 22 | 2 + | ϕ 32 | 2 , (10a) 

q [2] 
2 

= q [1] 
2 

− 2 i 
(λ2 − λ∗

2 ) ϕ 12 ϕ 

∗
32 

| ϕ 12 | 2 + | ϕ 22 | 2 + | ϕ 32 | 2 , (10b) 

where λ2 is a given parameter to construct the second-order DT, 

ϕm , 2 ’s (m = 1 , 2 , 3) are all the complex scalar functions with re- 

spect to x and t , ( ϕ12 , ϕ22 , ϕ32 ) 
T is the vector solution of Lax 

Pair (2) at λ = λ2 , and q 
[2] 
1 

and q 
[2] 
2 

denote the second-order DT 

solutions for Eqs. (1) . 

Based on DT (9) and (10) , we derive the generalized DT for 

Eqs. (1) . Assume that �(λ1 + δ) is a solution for Lax Pair (2) with 

λ = λ1 + δ and q 1 = q 
[0] 
1 

and q 2 = q 
[0] 
2 

, where δ is a small parame- 

ter. Expanding �(λ1 + δ) into the Taylor series at λ = λ1 , we can 

acquire 

�(λ1 + δ) = �0 + �1 δ + �2 δ
2 + · · · + �αδα + · · · , (11) 
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