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a b s t r a c t 

We have numerically investigated localization properties in the one-dimensional tight-binding model 

with chaotic binary on-site energy sequences generated by a modified Bernoulli map with the stationary- 

nonstationary chaotic transition (SNCT). The energy sequences in question might be characterized by their 

correlation parameter B and the potential strength W . The quantum states resulting from such sequences 

have been characterized in the two ways: Lyapunov exponent at band centre and the dynamics of the 

initially localized wavepacket. Specifically, the B −dependence of the relevant Lyapunov exponent’s decay 

is changing from linear to exponential one around the SNCT ( B � 2). Moreover, here we show that even in 

the nonstationary regime, mean square displacement (MSD) of the wavepacket is noticeably suppressed 

in the long-time limit (dynamical localization). The B −dependence of the dynamical localization lengths 

determined by the MSD exhibits a clear change in the functional behaviour around SNCT, and its rapid 

increase gets much more moderate one for B ≥ 2. Moreover we show that the localization dynamics for 

B > 3/2 deviates from the one-parameter scaling of the localization in the transient region. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

It has been known that in one-dimensional disordered systems 

(1DDS) with uncorrelated on-site disorder all eigenstates are ex- 

ponentially localized [1–3] . Still, for the 1D tight-binding model 

with potential sequences generated by Fourier filtering method 

(FFM) it has been known that correlations arising in the on- 

site potential delocalize the eigenstates and induce localization- 

delocalization transition (LDT) [4–16] . Indeed, the potential se- 

quences involved ought to have long-range correlation with power 

spectrum S ( f ) ∼ 1/ f α ( f < < 1, α ≥ 2), where f denotes frequency and 

α is spectrum index. The potential sequence is non-stationary 

when the total power 
∫ ∞ 

0 S( f ) df is divergent. 

Noteworthy, the results do not contradict the Kotani theory of 

the localization stating that if the stationary random potential is 

non-deterministic, absolutely continuous spectrum is absent. The 

stationarity is a sufficient condition for the absence of absolutely 

continuous spectrum [17] . On the other hand, the potential se- 

quence characterized by the power spectrum with the exponent 

α > 1 would be nonstationary. Further, most recent numerical 

studies show that the sequences with the power-law spectrum 

generated by Weierstrass function with fractal dimension 1 < D < 2 

induce the LDT [18–22] . 

E-mail address: hyamada@uranus.dti.ne.jp 

There are systematic numerical studies for the above- 

mentioned 1DDS models with a potential to take continuous value 

like in the Anderson model. Whereas uncorrelated random model 

(e.g., Bernoulli Anderson model) with discretized values are well- 

known to show specific localization phenomena, the number of 

studies of localization and delocalization with the correlated binary 

potential are still few [23–30] . E.g., among the latter examples the 

following one should be mentioned. There is a study of delocaliza- 

tion in binary “0” and “1” system and the sparse potential which 

takes different values for prime sites only [26] . It is in such a case 

that the very “sparse” model should also naturally be “nonstation- 

ary”. Remarkably, the existence of the LDT due to the potential in- 

tensity has also been demonstrated in the sparse impurity distance 

model [31] . 

Furthermore, a number of works also have been published on 

localized and delocalized phenomena in 1DDS with determinis- 

tic correlated sequence generated by chaotic map [23,32–35] . In 

our earlier papers, we also numerically investigated the local- 

ization and delocalization phenomena of binary random systems 

with long-range correlation by the modified Bernoulli map with 

stationary-nonstationary chaotic transition (SNCT) [23] . We shall 

refer to such a system MB system in the following [36–38] . The 

sequence becomes asymptotic non-stationary chaos for α > 1. In 

the MB system, it is possible to create the potential sequence 

that changes the property from short-range correlations includ- 
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ing δ−correlations to long-range correlation with a gentle change 

of the correlation parameter B . Meanwhile, studying in detail the 

modalities of the localization events, especially in the situations, 

where transitions from stationary (3/2 < B < 2) to nonstationary 

regime ( B > 2) regimen takes place in the binary correlated 1DDS 

has still not been enough. In particular, wavepacket dynamics in 

the nonstationary potential has hardly been investigated [39–43] . 

In this paper, we use the long-range correlated MB system having 

the binary potential sequence with taking either one of −W or W , 

like in our previous papers. We aim at reporting the characteristic 

B/W −dependences of the Lyapunov exponent, the normalized lo- 

calization length (NLL), and the quantum diffusion of the initially 

localized wavepacket around SNCT in binary correlated disordered 

systems. 

Generally, the statistical properties of the deterministic chaotic 

sequence such as the higher order correlations is quite different 

from the probabilistic one even though it have the same power 

spectrum, due to the difference of the ergodic measure. Quantita- 

tive transition of the Lyapunov exponent and dynamical localiza- 

tion length around SNCT ( B = 2 or α = 1 ) have not been reported 

in the 1DDS with the probabilistic sequence. It is the purpose of 

this report to investigate the qualitative changes in MB system that 

the statistical property can be finely adjusted by changing the pa- 

rameter B . 

This paper is organized as follows. In the next section, we shall 

briefly introduce the modified Bernoulli model. In Section 3 we 

report about the global behaviour of the B −dependence and 

N−dependence of Lyapunov exponent and the NLL at band cen- 

tre by the numerical calculation. While the Lyapunov exponent is 

positive throughout all the B regions studied here, the Lyapunov 

exponent decreases linearly for B < 2, but decays exponentially for 

B > 2. As a result, the quantum states get delocalized ( γ N → 0) 

with B → ∞ . In Section 4 , we report on the dynamical localiza- 

tion phenomena in the system. We find that the MSD is finite and 

dynamically localized in t → ∞ even if the correlation parameter 

changes from stationary regime B < 2 with power-law decay of the 

correlation to nonstationary regime ( B � 2). Its dynamical localiza- 

tion length (DLL) increases with the correlation parameter B , but 

the B −dependence changes from a relatively rapid increase to a 

more moderate one around SNCT( B � 2). The one-parameter scal- 

ing based on the localization length has large fluctuation in the 

transient region from ballistic motion to localization for B > 3/2. 

The summary and discussion are presented in the last section. 

Appendix shows the sample fluctuation including nonstationary 

regime. 

2. Model 

We consider the one-dimensional tight-binding Hamiltonian 

describing single-particle electronic states as 

H = 

N ∑ 

n =1 

W v (n ) c † n c n + 

N−1 ∑ 

n =1 

c † n c n +1 + H.C., (1) 

where c 
† 
n ( c n ) is the creation (annihilation) operator for an electron 

at site n . The { v n } N n =0 
and W are the disordered on-site energy se- 

quence and the strength, respectively. The amplitude of the quan- 

tum state | �> is given by φ(n ) ≡ 〈 �| c † n c n | �〉 in the site repre- 

sentation. To model the correlated disorder potential for v n ( n ≤ N ) 

in Eq. (1) , we use the modified Bernoulli map; 

X n +1 = 

{
X n + 2 

B −1 (1 − 2 b) X 

B 
n + b (0 ≤ X n < 1 / 2) 

X n − 2 

B −1 (1 − 2 b)(1 − X n ) B − b (1 / 2 ≤ X n ≤ 1) , 
(2) 

where B is a bifurcation parameter which controls the correlation 

of the sequence. b stands for the small perturbation which is set 

b = 10 −13 in this paper. The map has been introduced to investi- 

gate the basic property of the intermittent chaos by Aizawa et al. 

[36] . 

The sequence is stationary for B < 2 and nonstationary for 

B ≥ 2. The stationary property is recovered by the perturbation 

though the essential property remains invariant for a long time 

n < n b , where n b 
 (b) (1 −B ) /B [36] . Introduction of the b is useful 

for asymptotically examining the nonstationary region numerically 

from the stationary region, but numerical result with the value 

b = 10 −13 in this report is the same as the result when b = 0 . 

We use the course-grained binary sequence { v n } by the follow- 

ing rule: {
0 ≤ X n < 1 / 2 → v n = −1 

1 / 2 ≤ X n < 1 → v n = 1 . 
(3) 

Accordingly, the statistical property of the binary sequence can be 

characterized by changing the correlation parameter B . The follow- 

ing properties, for example, are analytically and numerically de- 

rived. In the stationary regime (3/2 < B < 2) the correlation function 

of the symbolic sequence decreases obeying the inverse-power law 

with the long-range correlation for large n [36] , 

C(n ) ≡< v n 0 + n v n 0 > ∼ n 

− 2 −B 
B −1 (n � 1) . (4) 

The correlation shows the critical decay C ( n ) ∼ 1/ n at B = 3 / 2 . In 

the nonstationary regime ( B ≥ 2) the correlation decays as, 

C(n ) 
 1 − 2 

B 

(
n 

n b 

) B −2 
B −1 

, (5) 

for n ≤ n b . The power spectrum S( f ) = 

1 
N | 

∑ N 
n =0 e 

−i 2 π f n/N | 2 ( f = 

0 , 1 , 2 , . . . , N − 1 ) in the low frequency limit behaves 

S( f ) ∼
{

f 0 1 ≤ B < 3 / 2 

f −α 3 / 2 ≤ B ≤ ∞ , 
(6) 

in the thermodynamic limit ( N → ∞ ), where 

α 
 

2 B − 3 

B − 1 

. (7) 

That is, the stationary sequence changes to nonstationary one 

with S ( f ) ∼ 1/ f around B � 2. It is suggested that in FFM model 

and Weierstrass model with long-range correlation LDT appear 

in a case with α � 2. Note that if B → ∞ , then S( f ) ∼ f −2 as 

shown in Fig. 1 . Note that these are true for B = 0 , and theo- 

retical cut-off time and cut-off frequency are given by 1 ≤ n ≤ n b 
and 1/ n b < f < < 1, respectively, for b > 0. The initial ensemble is 

taken based on the equilibrium renewal process. It has been shown 

that the correlation function depends on the initial ensemble 

[44,45] . 

Still, the localization property of 1DDS around α � 1 have not 

yet been studied. In the present paper, we investigate the change 

of the quantum states around the SNCT of the sequenece. It has 

already been reported that this property of the sequence strongly 

affects the statistical nature of the Lyapunov exponents of the elec- 

tronic wave functions [23] . 

Moreover, the binary sequence { v n } can be recast as 

{ (m 0 , σ ) , (m 1 , −σ ) , (m 2 , σ ) , (m 3 , −σ ) . . . . } . Here ( m k , σ ) stands 

for the m k times iterating of one and the same symbol σ , where 

σ represents −1 or 1. The sequence is uniquely determined by the 

cluster size distribution P ( m ) for the number m of iterations in the 

pure sequence ( m, σ ), which is independent of the value of the 

symbol. Hence, the time interval m between successive renewal 

events is a random variable, whose probability density function 

P ( m ) as b = 0 : 

P (m ) ∼ m 

−β, (8) 
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