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a b s t r a c t 

In this paper, we numerically study the effect of spike-timing-dependent plasticity on multiple coherence 

resonance and synchronization transitions induced by autaptic time delay in adaptive scale-free Hodgkin–

Huxley neuron networks. As the adjusting rate A p of spike-timing-dependent plasticity increases, multi- 

ple coherence resonance and synchronization transitions enhance and become strongest at an interme- 

diate A p value, indicating that there is optimal spike-timing-dependent plasticity that can most strongly 

enhance the multiple coherence resonance and synchronization transitions. As A p increases, increasing 

network average degree has a small effect on multiple coherence resonance, but its effect on synchro- 

nization transitions changes from suppressing to enhancing it. As network size is varied, multiple co- 

herence resonance and synchronization transitions nearly do not change. These results show that spike- 

timing-dependent plasticity can simultaneously optimize multiple coherence resonance and synchroniza- 

tion transitions by autaptic delay in the adaptive scale-free neuronal networks. These findings provide a 

new insight into spike-timing-dependent plasticity and autaptic delay for the information processing and 

transmission in neural systems. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

Stochastic resonance (SR) and coherence resonance (CR), a 

counterintuitive phenomenon that a suitable level of noise am- 

plifies a weak signal and enhances the response of the nonlinear 

system, has been found in various neuronal systems [1–3] . Syn- 

chronization phenomenon is correlated with many physiological 

mechanisms of normal and pathological brain functions including 

several neural diseases [4,5] . Synchronization in complex networks 

including neuronal networks have been extensively studied [6,7] . 

In recent decade, SR and CR in neuronal networks have been ob- 

served, such as SR and CR in neuronal networks [8–18] , spatial 

CR in excitable media and neuronal networks [19–21] , spatial de- 

coherence by small-world connectivity in neuronal networks [22] , 

as well as multiple SR (MSR) and multiple CR (MCR) induced by 

time delay and neuronal coupling in neuronal networks [23–25] . 

Meanwhile, many novel synchronization phenomena have been 

found, such as synchronization induced by time delay [26–29] and 
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synchronization transitions (ST) induced by time delay, coupling, 

and noise in neuronal networks [30–40] . 

Autapse is a special synapse which occurs between dendrites 

and axon of the same neuron and connects a neuron to itself, 

and these self-connections could establish a time-delayed feedback 

mechanism at the cellular level [41] . Autapses serve as feedback 

circuits and exist in approximately 80% of cortical pyramidal neu- 

rons including neurons in the human brain [42–44] . The roles of 

autapses in the firing dynamics of neuronal systems have been in- 

tensively studied. It is shown that autaptic activity can enhance 

the time precision of spikes of neurons, SR in scale-free neuronal 

networks, and the firing regulation of interneurons [45–48] . It can 

engineer the synchronization of action potentials in cultured neu- 

rons [49] , induce rich firing patterns in a Hindmarsh–Rose model 

neuron [50] , and enhance the propagation of weak rhythmic activ- 

ity across small-world neuronal networks [51] . Recently, MCR and 

ST induced by autaptic time delay in neuronal networks have also 

been observed [52–57] . 

As is known, neural networks are adaptive due to synaptic plas- 

ticity, and synaptic strength varies as a function of neuromodula- 

tion and time-dependent processes. One representative of this bi- 

ological effect is spike-timing-dependent plasticity (STDP), which 

modulates coupling strength adaptively based on the relative 
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timing between pre- and post-synaptic action potentials [58,59] . 

A series of biological works have confirmed the existence of STDP, 

which commonly occurs in excitatory synapses onto hippocampal 

pyramidal and neocortical neurons [59,60] , excitatory neurons in 

auditory brainstem [61] , parvalbumin-expressing fast-spiking stri- 

atal interneurons [62] , etc. Recently, the effect of STDP on the firing 

dynamics of neuronal systems has been intensively studied [63–

71] . For example, Li et al. found that self- organization of a neu- 

ral network with STDP can enhance spiking temporal coherence 

and SR [66] ; Kube et al. found that STDP modifies the weights 

of synaptic connections in such a way that synchronization of 

neuronal activity is considerably weakened [67] ; Mikkellsen et al. 

found that STDP induces persistent irregular oscillations between 

strongly and weakly synchronized states [70] ; Yu et al. showed 

that STDP can largely depress the temporal coherence and spatial 

synchronization induced by external noise and random shortcuts 

[71] , and it can enhance or depress SR in the small-world neuronal 

networks depending on its adjusting rate [72] . Very recently, we 

have studied the effect of STDP on MCR and ST induced by synap- 

tic and autaptic time delay in small-world neuronal networks. We 

found that MCR is suppressed (enhanced) as the adjusting rate of 

STDP increases (decreases), and there is optimal adjusting rate by 

which ST becomes strongest [73,74] . So far, however, there is no 

study on MCR and ST induced by autaptic time delay in adaptive 

scale-free neuronal networks with STDP. 

In this paper, we study the effect of STDP on MCR and ST 

induced by autaptic time delay in adaptive scale-free Hodgkin–

Huxley neuronal networks, and we aim to study if there is optimal 

STDP for both MCR and ST. We first present MCR and ST induced 

by autaptic time delay when the adjusting rate of STDP is fixed, 

and then focus on the effect of STDP on MCR and ST by investi- 

gating how MCR and ST vary when the adjusting rate of STDP is 

varied. We also study how STDP influences the effect of network 

average degree and network size on MCR and ST. Mechanism is 

briefly discussed. Finally, conclusion is given. 

2. Model and equations 

We use Hodgkin–Huxley neuron model [75] and Barabási–

Albert scale-free networks [76] . The present network compris- 

ing N = 100 neurons starts with m 0 connected nodes, and subse- 

quently every new node is attached to m (≤ m 0 ) different nodes 

already present in the network, whereby the probability p that a 

new node will be connected to node i depends on its degree k i 
in accordance with p = k i / 

∑ 

j k j . This growth and preferential at- 

tachment scheme yields a network with an average degree 〈 k 〉 = ∑ 

i k i /N = 2 m and a power-law degree distribution with the slope 

of the line equaling – 2.9 on a double logarithmic graph. Here we 

set m = m 0 . 

In the presence of autaptic current, the firing dynamics of adap- 

tive scale-free Hodgkin– Huxley neuronal networks can be written 

as: 

C 
d V i 

d t 
= −g Na m i 

3 h i ( V i − V Na ) − g K n i 
4 ( V i − V K ) 

− G L ( V i − V L ) + I au t i + I syn 
i 

+ ξi (t) (1) 

where C = 1 μFc m 

−2 is the membrane capacitance; g K = 36 , g Na = 

120 , and G L = 0 . 3 mS cm 

−2 are the maximal conductance of potas- 

sium, sodium, and leakage currents, respectively; V K = −77 mV , 

V Na = 50 mV , and V L = −54 . 4 mV represent corresponding reversal 

potentials. ξi (t) is Gaussian white noises with zero mean 〈 ξi (t) 〉 = 

0 and auto-correlation functions . . , noise intensity D = 2.0. Gating 

variables m , h and n governing the stochastic dynamics of sodium 

and potassium channels obey the following equations: 

d x i 
dt 

= αx i ( V i ) ( 1 − x i ) − βx i ( V i ) x i , ( x = m , h , n ) (2) 

with opening and closing rates: 

αm i 
( V i ) = 

0 . 1 ( V i + 40 ) 

1 − exp [ −( V i + 40 ) / 10 ] 
, 

βm i 
( V i ) = 4 exp [ −( V i + 65 ) / 18 ] , 

αh i 
( V i ) = 0 . 07 exp [ −( V i + 65 ) / 20 ] , 

βh i 
( V i ) = { 1 + exp [ −( V i + 35 ) / 10 ] } −1 

, 

αn i ( V i ) = 

0 . 01 ( V i + 55 ) 

1 − exp [ −( V i + 55 ) / 10 ] 
, 

βn i ( V i ) = 0 . 125 exp [ −( V i + 65 ) / 80 ] , 

I au t i 
is autaptic current and here takes chemical form [77] : 

I au t i = −g aut [ V i (t) − V syn ] S i ( t − τ ) 

S i ( t − τ ) = 1 / { 1 + exp [ −k ( V i (t − τ ) − θ ) ] } , (3) 

where g aut is autaptic conductance, V syn is autaptic reversal po- 

tential and here we choose V syn = 2 mV for excitatory autapses. 

V i (t − τ ) is the action potential of neuron i at earlier time t − τ , 

τ (in unit of ms) is autaptic delayed time. We assume all neu- 

rons have equal g aut and equal τ . Other parameters are: k = 8, 

θ = −0 . 25 . 

We use synaptic current I i 
syn in chemical form as [71] : 

I syn 
i 

= −
N ∑ 

j =1( j � = i ) 
ε i j C i j η j ( V i − V syn ) , (4) 

˙ η j = α( V j )(1 − η j ) − βη j , (5) 

α( V j ) = α0 / 
(
1 + e −V j / V shp 

)
, (6) 

where C ij = 1 if neuron j couples to neuron i , and C ij = 0 otherwise. 

The reversal potential is chosen as V syn = 0. The synaptic recovery 

function α ( V j ) can be taken as the Heaviside function. V shp = 5.0 

determines the threshold above which the postsynaptic neuron is 

affected by the pre-synaptic one. Other parameters α0 and β are 

chosen as α0 = 2 and β = 1 . Synaptic coupling strength ε i j varies 

through STDP modification function F , which is defined as follows: 

ε i j (t + 	t) = ε i j (t) + 	ε i j , (7) 

	ε i j = ε i j F (	t) , (8) 

F (	t) = 

{
A p exp ( −| 	t | / τp ) if 	t > 0 

−A m 

exp ( −| 	t | / τm 

) if 	t < 0 , 
(9) 

where 	t = t i − t j , and t i (or t j ) marks the spiking time of the i th 

( j th) neuron. The amount of synaptic modification is limited by A p 

and A m 

, called the adjusting rate of STDP. τ p and τm 

determine the 

temporal window for synaptic refinement. Experimental investiga- 

tions suggest that the temporal window for synaptic weakening is 

roughly the same as that for synaptic strengthening [59,60] . Poten- 

tiation is consistently induced when the postsynaptic spike gener- 

ates within a time window of 20 ms after presynaptic spike, and 

depression is induced conversely. Thus, the parameters are set to 

be τ p = τm 

= 20 [78] . Considering that STDP is usually viewed as 

dominant depression, we choose A m 

/ A p = 1.005. In this study, A p is 

chosen as a main variable of STDP, and all excitable synapses con- 

sidered are initiated as ε i j = ε max / 2 = 0 . 1 , where ε max = 0 . 2 is the 

upper limit of coupling. 
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