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a b s t r a c t 

The analysis of the Taylor-Couette problem in the small gap limit is extended to the cases of tertiary and 

quaternary solutions. The theoretical results are compared with experimental observations. Although in 

the latter the small-gap approximation is not always well approximated, the comparison of theoretical 

results and observations yields reasonable agreements. The absence of the wavy twist mode in the ob- 

served patterns is explained by the presence of no-slip boundary conditions in the axial direction of the 

experimental apparatus, which differ from the periodic conditions imposed in the theoretical analysis. 

Quaternary solutions bifurcating from the tertiary ones through subharmonic instabilities are presented 

and compared with experimental observations. Reasonable agreement has been found. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The Taylor-Couette system continues to fascinate experimental 

as well as theoretical fluid dynamicists by its rich variety of flow 

patterns. This variety is best illustrated by the famous Fig. 1 of the 

paper [1] , in which the numerous observed patterns have been in- 

dicated as functions of the rotation rates of two independently ro- 

tating co-axial cylinders. Since that time several new experimen- 

tal and theoretical studies have been prepared and this research 

is likely to continue in the future since a complete understanding 

of the various patterns of fluid flow in the Taylor-Couette system 

can still not be claimed. For a recent assessment of the role of the 

Taylor-Couette problem in the general field of fluid dynamics we 

refer to [2] and for an earlier review to [3] . 

In the present paper extensions of the analysis of [4] (to which 

we shall refer to in the following by WBN) will be presented. Our 

investigations are motivated by the experimental work of [5] (to 

which we shall refer to in the following by HBA) and by the more 

recent plane-Couette flow experiments carried out on a turntable 

by [6] (referred to hereafter by TTA) and by [7] (referred to by 

SSA). 

In the paper WBN the small-gap approximation was employed 

for the theoretical analysis of the Taylor-Couette problem. In the 

small gap limit a symmetry is gained and the number of param- 

eters is reduced by one. The fact that the more recent experi- 

mental observations of HBA have confirmed the stability bound- 
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aries for the onset of twist vortices even though the radius ratio 

of their cylindrical boundaries, r i /r o = 0 . 88 , differed considerably 

from the small gap limit, r i / r o ≈ 1, encourages us to continue the 

use of the small gap approximation. The small gap approximation 

or equivalently the plane Couette flow problem in a system rotat- 

ing about an axis in the span-wise direction has also been em- 

ployed by [8] and recently by [9] . [8] has focussed the attention 

on low rotation rates and referred to [10] for comparisons with 

experimental observations. Similarly [9] emphasized low rotation 

rates with the goal of comparisons with the experimental results 

of TTA and SSA. Because these experiments employed a Couette 

apparatus on a turn-table the observations had to be restricted to 

relative small values of the rotation rate. In the present work larger 

values of the rotation rate will be considered and comparisons will 

be made with observations of HBA based on a cylindrical appara- 

tus. 

A comparison with the observations of HBA has also been per- 

formed by [11] (to which we shall refer in the following by AnS) 

who performed numerical computations of patterns of the Taylor- 

Couette system for different radius ratios of the cylindrical bound- 

aries. Among those ratios they included the case r i /r o = 0 . 88 used 

by HBA. Wherever a comparison with the results of WBN has been 

possible AnS found good agreement. We regard this as additional 

support for our use of the small gap approximation. On the other 

hand the use of the experimental aspect ratio is not sufficient for a 

perfect agreement between theory and observation since the usual 

employment of periodic boundary conditions in the axial direction 

causes deviations from the experimental conditions. 
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Fig. 1. Taylor-Couette systems. (a) Circular Taylor-Couette system: two co-axial cylinders of radii r 1 and r 2 , rotating with different speeds �1 r 1 and �2 r 2 , respectively. (b) 

Narrow gap limit of the circular Taylor-Couette system (rotating plane Couette flow): the system is rotating with angular velocity �(= (0 , 0 , �/ 2)) and the two plates are 

drifting with a relative velocity (0, 2 R , 0). The dimensional gap width between the two infinite plates is 2 h . The x , y and z coordinates in the narrow gap planar system (b) 

correspond to the radial, azimuthal and axial directions in the circular Taylor-Couette system (a), respectively. Note that (b) refers to the dimensionless system. 

The basic equations are formulated and discussed in section 2 . 

There we also describe the numerical methods applied for their 

solutions. In section 3 the basic properties of the small gap Taylor- 

Couette system will be surveyed in terms of Taylor vortices with 

the critical wavelength and their subsequent bifurcations. As has 

been demonstrated by HBA the properties of solutions bifurcat- 

ing from axisymmetric Taylor vortices and from tertiary solutions 

depend rather strongly on the basic wavelength of the vortices. 

Hence in section 4 we outline stability boundaries for four of the 

different basic wavelengths investigated by HBA. Our conclusions 

are given in section 5 . 

2. Mathematical formulation of the problem 

We consider the flow in the narrow gap between two co-axial 

cylinders with radii r 1 and r 2 that are rotating with speeds �1 r 1 
and �2 r 2 , respectively. Half of the gap width, h ≡ (r 2 − r 1 ) / 2 will 

be used as length scale in the following and h 2 / ν is used as 

timescale, where ν is the kinematic viscosity of the fluid. We as- 

sume the limit h / r 1 tending to zero and introduce a Cartesian sys- 

tem of coordinates with x , y , z in the radial, azimuthal and ax- 

ial directions, respectively, as shown in Fig. 1 . The corresponding 

unit vectors are denoted by i , j , k . The dimensionless Navier-Stokes 

equations can then be obtained in the form: [
∂ 

∂t 
+ u · ∇ 

]
u + � k × u = − ∇π + ∇ 

2 u , (1) 

∇ · u = 0 , (2) 

where � is twice the mean rotation rate in dimensionless units, 

� = ( �1 + �2 ) h 

2 /ν. (3) 

The boundary conditions are given by 

u = ∓R j at x = ±1 , (4) 

where the Reynolds number R is defined by 

R ≡ h ( �1 − �2 ) ( r 1 + r 2 ) / ( 4 ν) . (5) 

It is convenient to eliminate the equation of continuity (2) by the 

introduction of the following general representation of the velocity 

field : 

u = [ −Rx + V (t, x )] j + W (t, x ) k + ̃

 u , ˜ u = ∇ × [ ∇ × i φ(t, x ) ] + ∇ × i ψ(t, x ) . (6) 

Accordingly ˜ u can be expressed in the form 

˜ u = −� 2 φ i + 

[
∂ 2 φ

∂ x∂ y 
+ 

∂ψ 

∂z 

]
j + 

[
∂ 2 φ

∂ z∂ x 
− ∂ψ 

∂y 

]
k, (7) 

where the operator � 2 is defined by � 2 ≡ ∇ 

2 − (i · ∇) 2 . By oper- 

ating with i ·∇ × ( ∇ × ◦) and i ·∇ ×◦ on Eq. (1) we obtain the fol- 

lowing two equations for φ( t , x ) and ψ( t , x ): [
∇ 

2 − ∂ 

∂t 

]
∇ 

2 � 2 φ − �
∂ 

∂z 
� 2 ψ 

= ( −Rx + V ) 
∂ 

∂y 
∇ 

2 � 2 φ − ∂ 2 V 

∂x 2 
∂ 

∂y 
� 2 φ

−∂ 2 W 

∂x 2 
∂ 

∂z 
� 2 φ + W 

∂ 

∂z 
∇ 

2 � 2 φ

+ i · ∇ × [ ∇ × ( ̃  u · ∇ ̃

 u ) ] , (8) 

[
∇ 

2 − ∂ 

∂t 

]
� 2 ψ + �

∂ 

∂z 
� 2 φ

= ( −Rx + V ) 
∂ 

∂y 
� 2 ψ + 

[
R − ∂V 

∂x 

]
∂ 

∂z 
� 2 φ

+ W 

∂ 

∂z 
� 2 ψ + 

∂W 

∂x 

∂ 

∂y 
� 2 φ − i · ∇ × ( ̃  u · ∇ ̃

 u ) . (9) 

The mean flows in the azimuthal and axial directions obey the 

equations [
∂ 2 

∂x 2 
− ∂ 

∂t 

]
V = − ∂ 

∂x 
� 2 φ

[
∂ 2 

∂ x∂ y 
φ + 

∂ 

∂z 
ψ 

]
, (10) 

[
∂ 2 

∂x 2 
− ∂ 

∂t 

]
W = − ∂ 

∂x 
� 2 φ

[
∂ 2 

∂ z∂ x 
φ − ∂ 

∂y 
ψ 

]
, (11) 

where the bar indicates the average over surfaces x = constant . 
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