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a b s t r a c t 

Network of coupled oscillators exhibit different types of spatiotemporal patterns. We report that as the 

coupling strength increases the unidirectionally coupled Hindmarsh–Rose neuron star network will syn- 

chronize. The condition for synchronization has been evaluated using Lyapunov function method. We also 

discuss the dynamics of the system in the presence of controllers. The control input generate interesting 

behaviors which consist of clusters of spatially coherent domains depending on the coupling strength. 

Drum head mode, mixed oscillatory state, desynchrony, and multi cluster states are formed and cluster 

reduction takes place before settling to complete synchrony. The evolution of a perfectly synchronized 

state via drum head mode, mixed oscillatory state, and clusters from a desynchronized state is reported 

for the first time. The parameter values which lead to stable cluster formation is also discussed. Our re- 

sults suggest that in the presence of controllers the common oscillator in the star network behaves as a 

driver and generates the transitions and cluster formation acts as a precursor to complete synchrony in 

Hindmarsh–Rose model with unidirectional star coupling. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The cooperative behavior of complex systems have many appli- 

cations in dynamical system theory. Synchronization phenomena 

is such a cooperative behavior commonly exhibited by physical, 

chemical, and biological systems [1,2] . Christiaan Huygens was the 

first one to observe the synchronization of two coupled pendulum 

clocks in 16th century [3] . Numerous experimental and theoretical 

works describing the dynamics of neural network and its applica- 

tion to brain science have been reported in literature [4–10] . The 

irregular behavior of individual neurons can be controlled by con- 

necting them using suitable coupling topologies which may lead to 

their synchronization and rhythmic activity [11,12] . 

There has also been some considerable interest on the vari- 

ous spatiotemporal patterns shown by coupled oscillator network. 

The role of noise in chaotic systems and non chaotic systems have 

been reported [13–16] . The coherence resonance in the presence 

of noise has also been studied recently [17] . Coupling topologies 

like all to all coupling (global), nearest neighbor coupling (lat- 

tice), and nonlocal coupling of chaotic maps and Kuramoto phase 
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oscillators were extensively studied [18–22] . When the coupling 

strength is increased the globally coupled chaotic maps show a 

transition from desynchrony to synchrony via the formation of 

clusters [23,24] , i.e., all oscillators within one cluster fire in ex- 

act synchrony. Synchronous clusters are obtained when oscillators 

synchronize with the members in the same group and no syn- 

chronization between the groups. Cluster formation in neural net- 

work is a mesoscale phenomenon which includes the cooperative 

rhythms of neuronal subpopulations whereas synchronization is a 

macroscale phenomenon with large scale patterns of activity. Clus- 

ter synchrony is highly dependent on the structure and symme- 

tries of the network [25–28] . Belykh et al. have reported the cluster 

synchronization of nonlocally coupled oscillators [29] . Clustering in 

a mean-field coupled Rosenzweig–MacArthur model has been re- 

ported by Arumugam et al. [30] . In star coupled oscillators Pecora 

and Carroll have reported an important desynchronization bifur- 

cation in which the nodes on the spokes show synchrony while 

the hub exhibits different dynamics termed as drum head mode 

(DHM) [31–33] . An interesting novel type of dynamics called mixed 

oscillatory state (MOS) has been identified recently in Hindmarsh–

Rose (HR) neurons with nonlocal coupling [34] . 

In this work we analyze the presence of DHM, MOS, cluster for- 

mation, and synchronization of star coupled HR neural network 

with electrical coupling. We have chosen star unidirectional cou- 
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pling topology in which all oscillators on the spoke of the star are 

connected to one common oscillator in the network thereby pro- 

viding minimum number of connections within the system. The 

common oscillator is called the hub, and the oscillators on the 

spoke of the star are termed as nodes. 

The experimental realization of spoke hub distribution 

paradigm and the importance of unidirectional coupling in 

human brain are widely investigated. Identifying the hub regions 

and their pivotal role in the coordination of brain activities is of 

great importance. Hubs can be classified as provincial and connec- 

tor hubs. The provincial hub occupies at the middle of a single 

functional cluster and the connector hub links the multiple func- 

tional parts like visual and sensorimotor areas of brain [35] . The 

contribution of individual brain regions within the cerebral cortex 

to overall brain activity has been established in cat and macaque 

[35] . The electroencephalography (EEG), magnetoencephalography 

(MEG), and functional magnetic resonance imaging (fMRI) studies 

have also revealed the functional role of individual brain regions 

in integrating the over all information processing [36] . The recent 

studies on the synchronization between the heart signals and EEG 

frequency bands revealed that a strong unidirectional coupling 

from brain to heart exists during all sleep stages (stages 1–4) 

[37] . The EEG and MEG analysis on the cortical activation patterns 

show that, a remarkable unidirectional coupling from contralateral 

motor cortex to muscles exist in the swing leg during treadmill 

stereotyped walking [38] . The breathing and heartbeat generators 

acts like two weakly coupled oscillators and their synchronization 

is enhanced by an uncorrelated noise from brain. This coupling 

has unidirectional nature, with a coupling direction from breathing 

to heart beat [39] . In communication systems this type of network 

structure is very important because the hub acts as a driver which 

controls the entire network. In computer networks, the hub in 

star topology can be considered as a server and the nodes as the 

clients. Here we mainly discuss the role of hub in providing equal 

coupling to the nodes and its driving mechanism to form DHM, 

MOS, and clustered states. 

The paper is arranged as follows. Section 2 describes the HR 

model and the collective behavior of star coupled HR network by 

varying the values of coupling strength and the parameter de- 

scribing the activation–inactivation dynamics of fast ion channel. 

The control inputs for synchronizing the system are evaluated us- 

ing Lyapunov function method in Section 3 . DHM, MOS, cluster 

formation, and synchronization are also explained in Section 3 . 

Section 4 concludes the study. 

2. The model 

2.1. HR model 

We start with HR model, described by the following set of dif- 

ferential equation, 

˙ x = y + ax 2 − x 3 − z + I, 

˙ y = 1 − bx 2 − y, (1) 

˙ z = r(R (x − x e ) − z) , 

where x denotes the membrane potential. y is the recovery vari- 

able representing the rate of change of fast current of K 

+ or 

Na + ions and z denotes the adaptation variable which capture the 

slower dynamics of other ion channels (e.g., Ca + ). The parameters 

a and b denote activation and inactivation of the fast ion chan- 

nel whereas R and x e describe activation and inactivation of the 

slow ion channel. The speed of variation of z is controlled by the 

parameter r [40–42] . The parameter I represents the external cur- 

rent that reaches the neuron. The model describes the firing be- 

havior of neurons and can be decomposed in to a slow fast sys- 

tem and the slow oscillations of z drives the fast subsystem ( x, y ) 

through periods of quiescent and oscillatory behavior [29] . If the 

parameters are chosen as a = 3 . 0 , b = 5 . 0 , R = 4 . 0 , r = 0 . 006 and 

x e = −1 . 61 [43] , the model exhibits resting state, regular spiking, 

regular bursting and chaotic bursting by varying I . For I in range 

0 < I < 1.3, the trajectories are stabilized. When I = 1 . 39 , periodic 

spiking behavior starts and for I = 1 . 7 , the behavior of the system 

changes from periodic spiking to periodic bursting. As I reaches 3.1 

unstable nature of the system grows and it becomes chaotic [43] . 

In our simulations I = 3 . 1 is chosen to ensure the chaotic bursting 

dynamics of isolated units. 

2.2. Star coupled HR model and synchronization 

Now consider a network of ‘N’ HR neurons with electrical cou- 

pling in star unidirectional connection topology. The N th oscillator 

is chosen as the hub and oscillators 1 to N − 1 are arranged on the 

spoke of the star [44] . The state equations are 

˙ x i = y i + a x i 
2 − x i 

3 − z i + I + g(x N − x i ) , 

˙ y i = 1 − b x i 
2 − y i , (2) 

˙ z i = r(R (x i − x e ) − z i ) , i = 1 , 2 , . . . , N. 

Due to the extremely small time scale associated with the 

transmission of nerve impulse at the synaptic junction, we con- 

sider instantaneous coupling to model the system. The coupling 

between the oscillators are established through g(x N − x i ) in which 

g represents the coupling strength between the oscillators. The 

coupling topology used in Eq. (2) is star unidirectional, where x N 
is the membrane potential of N th neuron (hub) to which all oth- 

ers are connected. As a result of unidirectional coupling the hub 

exhibits chaotic bursting irrespective of the value of g . 

Primarily we have analyzed the collective dynamics of star cou- 

pled network with increase in coupling strength. For 0 < g < 0.85 

the oscillators show incoherent behavior, i.e., desynchrony prevails 

as a result of weak coupling as indicated in Fig. 1 (a). When the 

coupling strength increases, i.e., g ≥ 0.85 all neurons in the network 

show synchronous behavior as shown in Fig. 1 (b) with chaotic 

bursting time series. The star coupled HR neural network with 

electrical coupling shows synchronization as the coupling strength 

is increased. 

2.3. Stability of synchronization 

The stability of synchronization can be quantified using the 

master stability approach developed by Pecora and Carroll [32] . 

The synchronization is stable if the master stability function is neg- 

ative at each of the transverse eigenvalues. The analytical expres- 

sions for estimating the synchronization threshold for diffusively 

coupled continuous and discrete time chaotic systems have been 

reported [45] . 

On the completely stable synchronization manifold, the dif- 

ferences between neural oscillator coordinates x i ⊥ = x N − x i , y i ⊥ = 

y N − y i and z i ⊥ = z N − z i vanish in the limit of t −→ ∞ and there 

exist a synchronous solution ζ1 (t) = ζ2 (t) = · · · = ζN (t) , where 

ζi (t) = (x i , y i , z i ) . The stability equations for perturbations trans- 

verse to the synchronization manifold is, 

˙ x i ⊥ = y i ⊥ + 2 ax x i ⊥ − 3 x 2 x i ⊥ − z i ⊥ − gx i ⊥ , 

˙ y i ⊥ = −2 bx x i ⊥ − y i ⊥ , (3) 
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