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The dynamics of a diffusive predator-prey system with anti-predator behaviour and maturation delay 

subject to Neumann boundary condition is investigated in this paper. The global stability of boundary 

equilibrium is studied. For coexisting equilibrium, Turing instability induced by diffusion and Hopf bifur- 

cation induced by time delay are studied. By the theory of normal form and center manifold method, the 

conditions for determining the bifurcation direction and the stability of the bifurcating periodic solution 

are derived. 
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1. Introduction 

Many researchers have studied predator-prey model [1–11] , 

since it exists universally and is important with other biolgical sys- 

tems. Among these models, all authors label the animals as preda- 

tor or prey, and suppose predator feeds on prey. In the real world, 

anti-predator behaviour of prey population exists and many exper- 

iments have shown that this behaviour is achieved in two ways. 

One way is that morphological changes or through changes in be- 

haviour [12,13] . Another way is that the prey attack their predators 

[14,15] . For the first way, some authors have studied it and suggest 

that more efficient anti-predator behaviour is beneficial to the prey 

population, and can reduce the predator density. For the second 

way, Tang and Xiao propose a predator-prey model by introducing 

a parameter as the rate of anti-predator behaviour of prey to the 

predator population [16] . They suppose that adult prey can attack 

and even kill the juvenile predators. 

In predator-prey models, the functional response of predators 

to prey density is essential and it can enrich the dynamics of 

predator-prey systems. In ecology, many factors can affect func- 

tional responses, such as prey escape ability, predator hunting 

ability and structure of the prey habitat [17,18] . Generally, func- 

tional responses can be divided into types: prey-dependent (such 

as Holling I-III [19] ) and predator-dependent (such as Beddington- 

DeAngelis [20] , Crowley-Martin [21] , Hassel-Varley [22] ). In [23] , 

Skalski and Gilliam suggest that three predator-dependent func- 
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tional responses can provide better description of predator feeding 

over a range of predator-prey abundances present. In some cases, 

the Beddington-DeAngelis type performed even better. 

In the real world, predators and their preys distribute inhomo- 

geneous in different spatial location at time t , and more and more 

researchers study diffusive predator-prey model. In addition, diffu- 

sion can induce Turing instability, pattern formation, spatially in- 

homogeneous periodic solutions and exhibit rich dynamical prop- 

erties [24–28] . In predator-prey models, time delay always occurs 

in maturation time, capturing time, gestation time or others. Many 

scholars have studied the delayed predator-prey systems, since it 

can exhibits rich dynamics [29–32] . Time delay may affect the sta- 

ble or unstable outcome of prey densities due to predation. 

2. Method 

2.1. Model formulation 

Denote u ( x, t ) and v ( x, t ) as prey and predator densities at the 

location x and time t respectively. We consider the following sys- 

tem ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ u (x,t) 
∂t 

= d 1 �u + ru 

(
1 − u 

K 

)
− Bu v 

C+ A 1 u + A 2 v , x ∈ (0 , �) , t > 0 

∂ v (x,t) 
∂t 

= d 2 �v + v [ EBu (t−τ ) 
C+ A 1 u (t−τ )+ A 2 v (t−τ ) 

− d − su ] , x ∈ (0 , �) , 

t > 0 

u x (0 , t) = v x (0 , t) = 0 , u x (�, t) = v x (�, t) = 0 , t > 0 

u (x, θ ) = u 0 (x, θ ) ≥ 0 , v (x, θ ) = v 0 (x, θ ) ≥ 0 , x ∈ [0 , �] , 
θ ∈ [ −τ, 0] . 

(2.1) 
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All the parameters in the model are positive: 

d 1 and d 2 are diffusion coefficients of prey and predator respec- 

tively; 

r is intrinsic growth rate of prey; 

K is the carrying capacity of the prey in ecosystem; 

B is the maximum predator attack rate; 

C is the half-saturation constant; 

A 1 is the effect of handling time for predators; 

A 2 is the magnitude of interference among predators; 

E is the conversion efficiency of prey into the predator; 

d is the death rate of predator; 

s is the rate of anti-predator behaviour of prey to the predator 

population; 

τ is time delay and measures the maturation period of preda- 

tor. 

The prey and predator diffuse within the considered habi- 

tat [0, �]. The prey follows the logistic growth formulation 

with no predator. The predation predator on prey is modeled 

as a Beddington–DeAngelis type functional response ( B v / (C + 

A 1 u + A 2 v ) ). The growth rate of predator is formulated to be 

EBu (t − τ ) / (C + A 1 u (t − τ ) + A 2 v (t − τ )) , depending on the prey 

and predator densities at time t − τ . Similar to the work in [16] , 

we suppose the prey can attack the predator. In system (2.1) , the 

boundary condition is Neumann boundary condition, based on the 

hypothesis that the region is closed, with no prey and predator 

species entering and leaving the region at the boundary. 

2.2. Non-dimensionalization 

For the convenience to study the model (2.1) , we perform non- 

dimensionalization. Denote a = 

B 
rC , b = 

A 1 
C , c = 

A 2 
C , e = 

EB 
C . System 

(2.1) can be rewritten as: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ u (x,t) 
∂t 

= d 1 �u + ru 

[
1 − u 

K 
− a v 

1+ bu + cv 

]
, x ∈ (0 , �) , t > 0 

∂ v (x,t) 
∂t 

= d 2 �v + v 
[

eu (t−τ ) 
1+ bu (t−τ )+ cv (t−τ ) 

− d − su 

]
, 

x ∈ (0 , �) , t > 0 

u x (0 , t) = v x (0 , t) = 0 , u x (�, t) = v x (�, t) = 0 , t > 0 

u (x, θ ) = u 0 (x, θ ) ≥ 0 , v (x, θ ) = v 0 (x, θ ) ≥ 0 , x ∈ [0 , �] , 
θ ∈ [ −τ, 0] . 

(2.2) 

For convenience, we assume � = lπ, where l > 0 in the rest of this 

paper. 

The rest of this paper is organized as follows. In Section 3 , 

we discuss the existence of coexistent equilibria. In Section 4 , we 

study global stability of the boundary equilibrium. In Section 5 , we 

study the stability of coexistent equilibria and Hopf bifurcation, in- 

cluding Turing instability induced by diffusion, the stability and di- 

rection of bifurcating periodic solution. In Section 6 , we give some 

numerical simulations. In Section 7 , we give a conclusion. 

3. Equilibrium analysis 

This manuscript mainly study the stability and Hopf bifurca- 

tion of equilibria for the model (2.2) . So we first analyze the ex- 

istence of equilibria including boundary equilibria and coexisting 

equilibrium. Obviously, system (2.2) has two boundary equilibria 

(0, 0) and ( K , 0). In this paper, we mainly focus on the coex- 

isting equilibrium point of the system (2.2) . Now we discuss the 

existence of coexisting equilibrium point. Suppose ( u ∗ , v ∗ ) is co- 

existing equilibrium point of the system (2.2) . we can easily ob- 

tained that v ∗ = 

eu ∗(K−u ∗) 
aK(d+ su ∗) 

. Obviously, v ∗ > 0 implies u ∗ < K . Submit- 

ting v ∗ = 

eu (K−u ∗) 
aK(d+ su ∗) 

into the second equation, yields 

h (u ) = (ce − abKs ) u 

2 − K(ce + a (bd − e + s )) u − adK = 0 (3.1) 

If s � = 

ce 
abK 

, Eq. (3.1) has two roots 

u + = 

K(ce + a (bd−e + s ))+ 
√ 

K 2 (ce + a (bd −e + s )) 2 +4 ad K(ce −abKs ) 

2(ce −abKs ) 

u − = 

K(ce + a (bd−e + s )) −
√ 

K 2 (ce + a (bd −e + s )) 2 +4 ad K(ce −abKs ) 

2(ce −abKs ) 
. 

(3.2) 

Then system (2.2) has coexisting equilibrium ( u ∗ , v ∗ ) if and only if 

h (u ) = 0 has root u ∗ such that 0 < u ∗ < K . Clearly, h (0) = −adK < 0 

and h (K) = aK(K(e − s (1 + bK)) − d − bdK) . 

Case I: s � = 

ce 
abK 

and s < e/ (1 + bK) − d/K. In this case, h ( u ) is a 

parabola and h ( K ) > 0, system (2.2) has a unique coexisting equilib- 

rium (u + , v + ) , where v + = 

eu + (K−u + ) 
aK(d+ su + ) . 

Case II: max { ce 
abK 

, e/ (1 + bK) − d/K, 
e (a + c) −abd 

a +2 abK 
} < s < e − bd −

ce/a and (K(ce + a (bd − e + s ))) 2 + 4 adK(ce − abKs ) > 0 . In this 

case, h ( K ) < 0 and h ( u ) is a parabola going downwards, with the 

axis of symmetry in the interval (0,K), and has two roots. System 

(2.2) has two coexisting equilibria (u + , v + and (u −, v −) , where 

v − = 

eu −(K−u −) 
aK(d+ su −) 

. 

Case III: s = 

ce 
abK 

. Denote u 0 = 

ad 
a ( e −bd−ce/abK ) −ce 

. If 0 < u 0 < K , 

then system (2.2) has a unique coexisting equilibrium ( u 0 , v 0 ), 

where v 0 = 

eu 0 (K−u 0 ) 
aK(d+ su 0 ) 

. 

4. Global stability of the boundary equilibrium 

In this section, we discuss the global stability of the boundary 

equilibrium ( K , 0) by using the similar method in [33] . Consider 

the case s > e/ (1 + bK) . Denote 

g 1 (φ, ψ) = r φ1 

(
1 − φ1 

K 

)
− ar φ1 φ2 

1 + bφ1 + cφ2 

, 

g 2 (φ, ψ) = 

eψ 1 φ2 

1 + bψ 1 + cψ 2 

− dφ2 − sφ1 φ2 , 

where φ = ( φ1 , φ2 ) 
T 
, ψ = ( ψ 1 , ψ 2 ) 

T 
. It is easy to check that g = 

(g 1 , g 2 ) is mixed quasi-monotone in R̄ 

2 + × R̄ 

2 + . Define ( ̂  u , ̂  v ) = (0 , 0) 

and ( ̃  u , ̃  v ) = (M 1 , M 2 ) , where M 1 ≥ K and M 2 > 0. Then ( ̂  u , ̂  v ) and 

( ̃  u , ̃  v ) are coupled upper and lower solutions of the system (2.2) , 

since 

r ̃  u 

(
1 − ˜ u 

K 

)
− ar ̃  u ̂

 v 
1 + b ̃  u + c ̂ v 

≤ 0 , 
e ̃  u ̃

 v 
1 + b ̃  u + c ̂ v 

− d ̃ v − s ̃  u ̃

 v ≤ 0 , 

r ̂  u 

(
1 − ˆ u 

K 

)
− ar ̂  u ̃

 v 
1 + b ̂  u + c ̃ v 

≥ 0 , 
e ̂  u ̂

 v 
1 + b ̂  u + c ̃ v 

− d ̂ v − s ̂  u ̂

 v ≥ 0 . 

Choose M 1 and M 2 as sufficiently large, from Theorem 2.1 in 

[34] , we know that there exists a unique global nonnegative solu- 

tion ( u, v ) for system (2.2) with nonnegative initial value 

u 0 (x, θ ) , v 0 (x, θ ) , x ∈ [0 , Lπ ] , θ ∈ [ −τ, 0] 

and u 0 (x, θ ) �≡ 0 and v 0 (x, θ ) �≡ 0 . Using the maximum principle, 

we can obtain that u ( x, t ), v ( x, t ) > 0 for t > 0. 

Let ( ̂  u , ̂  v ) = (ε, 0) and ( ̃  u , ̃  v ) = (K, δ(ε)) , where ε is a small 

positive number and δ( ε) > 0 such that δ(ε)[ a − (1 − ε/K) c] ≤ (1 −
ε/K)(1 + bε) . We can verify that ( ε, 0) and ( K, δ( ε)) are also cou- 

pled upper and lower solutions of the system (2.2) . When 

ε < φ1 , ψ 1 < K, 0 < φ2 , ψ 2 < δ(ε) 

from the boundedness of the partial derivative of g i (i = 1 , 2) with 

respect to φ, ψ , we know that g i satisfy the Lipschitz condi- 

tion. Denote the Lipschitz constants by K i , (i = 1 , 2) . There exists 

a unique global solution ( u, v ) to the system (2.2) , and it such that 

(ε, 0) ≤ (u, v ) ≤ (K, δ(ε)) whenever (ε, 0) ≤ (u 0 (x, θ ) , v 0 (x, θ )) ≤
(K, δ(ε)) , by the Theorem 2.1 in [34] . 
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