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a b s t r a c t 

Cyclic dominance is observed in predator-prey interactions, the mating strategy of side-blotched lizards, 

the overgrowth of marine sessile organisms and competition in microbial populations and many other 

natural systems. Rock-Paper-Scissor(RPS) is a popular game which demonstrates cyclic dominance. In this 

paper, we investigate replicator dynamics of RPS-game under logistic growth functions with Allee effect. 

The results obtained are compared with the case of no Allee effect. Due to Allee effect the number of sta- 

ble attractors increases in a certain parameter region. The obtained result can be interpreted biologically 

that diversity of an ecological system increases due to Allee effect. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Evolutionary game theory is essential for explaining all aspects 

of evolution from individual behaviors up to the history of life [1] . 

Game theory not only applies to social games [2] , it also applies to 

ecology [3] ,and even in infectious diseases control [4] . Motivated 

by the applications of evolutionary game theory in almost all ar- 

eas of natural science stimulate many researchers to concentrate 

on this field [5–9] . 

Games of cyclic dominance [10] play an eminent role in ex- 

plaining the biodiversity in nature [11,12] , structural complexity 

[13] , prebiotic evolution [14] and Darwinian’s selection [15] . Cyclic 

interactions have been observed in different ecological systems 

e.g. microbial populations [11,16] , plant systems [17,18] and marine 

benthic systems [19] . Cyclic dominance is also useful in explain- 

ing the mating strategy of side-blotched lizards [20,21] , the over- 

growth of marine sessile organisms [22] , the genetic regulation in 

the repressilator [23] , and in explaining the oscillating frequency 

of lemmings [24] and of the Pacific salmon [25] . Biodiversity in 

models of cyclic dominance was observed even in presence of site- 

specific heterogeneous invasion rates [26] . Cyclic dominance may 

even lead to collapse of biodiversity due to accidental extinction of 

one of the participating species [26] . Cyclic interactions were also 

reported by Perc et al. [27] to address fundamental problems of 

stability for the competition of two defensive alliances. It should 

be noted that the importance of cyclic dominance extends far be- 

yond biodiversity, with applications in human cooperation [28] , in 

human bargaining [29] , and public goods provisioning and pun- 

ishment [30,31] . Szolnoki et al. [32] demonstrated that protection 
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spillovers may fundamentally change the dynamics of cyclic dom- 

inance in structured populations and they outlined the possibility 

of programming pattern formation in microbial populations. 

In the Rock-Paper-Scissors(RPS) game, there is cyclic domina- 

tion among three strategies. In this game-rock is wrapped by pa- 

per, paper is cut by and scissors are crushed by rock. So we see 

a case of cyclic dominance where rock wins over scissors loses to 

paper, scissor wins over paper and loses to rock and paper wins 

over rock while losing to scissor. 

RPS is observed in the mating habit of the side-blotched 

lizard (uta-stansburiana) [20] . The male side-blotched lizard has a 

coloured throat that is either orange, blue, or has a yellow stripe. 

The orange throated male is tough, and tries to mate with as many 

females as possible, defending a large area of territory to do so. 

The blue-throats are the next most tough, but have taken the evo- 

lutionary strategy of (effective) monogamy, defending only the ter- 

ritory enough for one female. Finally, there are the weakest, the 

yellow stripes, who sneak up on the orange throats while they 

aren’t looking and mate with the females in the orange throat’s 

territory. In effect, orange beats blue because they are tougher, 

blue beats yellow because they are more alert, and yellow beats 

orange because they are sneaky. The standard zero sum pay-off

matrix for a RPS game is given as [33] 

A = 

[ 

0 , 0 1 , −1 −1 , 1 

−1 , 1 0 , 0 1 , −1 

1 , −1 −1 , 1 0 , 0 

] 

which is suitable for modeling cyclic dominance of natural sys- 

tems. Here a payoff of 1 means win while a payoff of -1 signifies 

loss. It is a familiar fact that replicator dynamics for RPS game or- 

bits around the equilibrium (1/3, 1/3, 1/3) but it does not reach an 

ESS for an exponential growth [33] . 
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Fig. 1. Phase diagram of the Allee flow field ˙ N = rN 
(

N 
m 

− 1 
)(

1 − N 
k 

)
. 

Toupo and Strogatz [34] have reported that for a class of mu- 

tation patterns, the replicator-mutator equations for the RPS game 

was seen to have stable limit cycle solution. For those classes of 

mutation patterns, a tiny rate of mutation and a tiny departure 

from a zero-sum game was enough to destabilize the coexistence 

state of a RPS game and to set it into self-sustained oscillations. 

Wesson and Rand [35] have generalized the results obtained by 

Hofbauer and Sigmund [33] and formulated the replicator equa- 

tions for a general type of growth functions. This formulation is 

very useful in modeling natural or social systems that are not ade- 

quately described by the usual replicator dynamics. They had used 

growth function g(x ) = x − ax 2 , for all the three species and it was 

shown that with appropriate choice of parameter values there are 

multiple fixed points of the system that do not exist in the usual 

model g(x ) = x . In particular they had chosen logistic growth func- 

tion for all three species and shown the existence of center char- 

acter in the neighborhood of the critical point (1/3, 1/3, 1/3). 

It is well recognized that individuals of many species can ben- 

efit from the presence of conspecifics, a concept broadly referred 

to as the Allee effect [36] . The Allee effect occurs when population 

growth rate is reduced at low population size [37–39] . Allee ef- 

fect may arise due to difficulties in finding mates when population 

density is low, social dysfunction at small population sizes and in- 

breeding depression [40] . Recently, the mathematical models with 

Allee effect have received considerable attention from theoreticians 

[41–43] as well as experimentalists [44] . Allee effect is character- 

ized by a correlation between population size or density and the 

mean individual fitness (often measured as per capita population 

growth rate) of a population. The growth model in presence of 

Allee effect [45] can be written as 

˙ N = rN 

(
N 

m 

− 1 

)(
1 − N 

k 

)
. 

Here m, k represents Allee threshold population and carrying ca- 

pacity respectively. If a population tries to evolve according to the 

above evolution it runs to extinction when it is less than m while 

if it is more than m it grows until reaching the carrying capacity 

k . However, if it ever crosses k it falls back to the carrying capacity 

as the resources are limited. This can be noticed by flow field in 

Fig. 1 . The importance of Allee effect in natural environment moti- 

vated us to inspect its influence in replicator dynamics. 

The presence of Allee effect in many real world biological sys- 

tems [36] motivated us to modify the replicator equations of Wes- 

son and Rand [35] by using Allee effect induced growth function. 

The objective of this study is to analyze the effects in the proposed 

dynamics when logistic growth with Allee effect is used instead of 

the usual exponential growth [34] or logistic growth [35] . Here the 

fitness is assumed to be governed by the payoff attained in the RPS 

game. The replicator equations are formulated and analysed. 

This paper is organized as follows: in Section 2 , we introduce 

our model where species deviate from regular growth and formu- 

late the replicator equations in case of general logistic growth and 

under Allee effect. In Section 3 , we examine the models presented 

in the previous section analytically, presenting the necessary obser- 

vations. Last section summarizes the findings and discusses their 

potential implications. 

2. Model 

Evolutionary game theory helps to model the evolution of com- 

peting strategies within a population by combining the classical 

tools of game theory with differential equations. The most com- 

mon approach [33] focuses on the relative frequencies of different 

strategies in a population using replicator equation, 

˙ x i = x i ( f i − φ) , i = 1 , 2 , . . . , n 

where x i is the frequency of strategy i , f i (x 1 , x 2 , . . . , x n ) is the fit- 

ness of strategy i , and φ = 

∑ 

f i x i is the average fitness across the 

population. 

The above form for replicator equations is achieved using an 

exponential model of population growth 

˙ ξi = ξi g i i = 1 , 2 , . . . , n 

where ξ i is a real valued function that approximates the popula- 

tion of strategy i and g i (ξ1 , ξ2 , ., ξn ) is the fitness of that strategy. 

Let us define relative abundance of strategy i as x i ≡ ξi 
p where p is 

the total population. We have, 

p(t) = 

∑ 

i 

ξi (t) . 

We see that 

˙ p = 

∑ 

i 

˙ ξi (t) = 

∑ 

i 

ξi g i = p 
∑ 

i 

ξi 

p 
g i = p 

∑ 

i 

x i g i 

˙ p = pφ (1) 

where φ = 

∑ 

i x i g i is the average fitness of the whole population. 

By product rule we get 

˙ x = 

˙ ξi 

p 
−

˙ ξi 

p 2 
˙ p = 

ξi 

p 
g i −

ξi 

p 

˙ p 

p 
= 

ξi 

p 

(
g i −

˙ p 

p 

)
= x i (g i − φ) . (2) 

The fitness of a strategy is assumed to depend only on the rela- 

tive abundance of each strategy in the overall population, since the 

model seeks to capture the effect of competition between strate- 

gies, not any environmental or other factors. 

Therefore, we assume that 

g i (ξ1 , ξ2 , . . . , ξn ) = f i 

(
ξ1 

p 
, 
ξ2 

p 
, . . . , 

ξn 

p 

)
= f i (x 1 , x 2 , . . . , x n ) . (3) 

Here f i only tells about the fitness of strategy i and finally the repli- 

cator equation takes the following form 

˙ x = x i ( f i − φ) . 

Mathematically, φ is the coupling term that introduces dependence 

on the abundance and fitness of other strategies. 

The replicator equation was generalized by Wesson and Rand 

[35] for an arbitrary growth function. They proposed the replicator 

equation for the growth function g ( x ) as 

˙ x i = g(x i )( f i − φ) 

where φ is now a modified average fitness defined by 

φ = 

∑ 

i g(x i ) f i ∑ 

i g(x i ) 
. 



Download English Version:

https://daneshyari.com/en/article/8253928

Download Persian Version:

https://daneshyari.com/article/8253928

Daneshyari.com

https://daneshyari.com/en/article/8253928
https://daneshyari.com/article/8253928
https://daneshyari.com

