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a b s t r a c t 

In this paper, we identify the unknown space-dependent source term in a time-fractional diffusion equa- 

tion with variable coefficients in a bounded domain where additional data are consider at a fixed time. 

Using the generalized and revised generalized Tikhonov regularization methods, we construct regularized 

solutions. Convergence estimates for both methods under an a-priori and a-posteriori regularization pa- 

rameter choice rules are given, respectively. Numerical example shows that the proposed methods are 

effective and stable. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Fractional diffusion equations have attracted great attention in 

last few decades. The fractional diffusion equation is a generaliza- 

tion of the classical diffusion equation which models anomalous 

diffusive phenomena. However, for a few practical issues, the initial 

information, or a part of boundary information, or diffusion coeffi- 

cients, or source term might not be given and that we need to re- 

cover them by extra measuring information which is able to yield 

to some fractional diffusion inverse problems. In recent years, in- 

verse problems for time-fractional diffusion equation have become 

very active, interdisciplinary research area and have wide applica- 

tion in science, engineering, industry, medicine, finance as well as 

in life and earth sciences. 

In this paper, we consider the inverse problem of determining 

the unknown source term f ( x ) in time fractional diffusion equation. 

Let � ⊂ R 

d be a bounded domain with sufficient smooth 

boundary ∂�. We consider the fractional diffusion equation of the 
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form 

0 ∂ 
α
t u ( x, t ) − ( Lu ) ( x, t ) = f ( x ) q ( t ) , x ∈ �, t ∈ ( 0 , T ) , 

u ( x, t ) = 0 , x ∈ ∂�, t ∈ ( 0 , T ) , 

u ( x, 0 ) = 0 , x ∈ �, 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(1.1) 

where 0 ∂ 
α
t u is the left-sided Caputo fractional derivative of order 

α (0 < α < 1) defined by 

0 ∂ 
α
t u = 

1 

�(1 − α) 

∫ t 

0 

1 

(t − s ) α
∂u (x, s ) 

∂s 
ds, 0 < α < 1 , (1.2) 

and −L is a symmetric uniformly elliptic operator defined on 

D (−L ) = H 

2 (�) ∩ H 

1 
0 
(�) by 

Lu ( x ) = 

d ∑ 

i =1 

∂ 

∂x i 

( 

d ∑ 

j=1 

a ij ( x ) 
∂ 

∂x j 
u ( x ) 

) 

+ c ( x ) u ( x ) , x ∈ �, (1.3) 

the coefficients satisfy a i j = a ji ∈ C 1 ( ̄�) , 
d ∑ 

i, j=1 

a i j ξi ξ j ≥

θ
d ∑ 

i =1 

| ξi | 2 (θ > 0) , c(x ) ≤ 0 , c(x ) ∈ C( ̄�) . 

The inverse problem is to find f ( x ) from a final data u (x, T ) = 

g(x ) . Since the data g ( x ) is measured, there must be measurement 

errors and we assume the measured data function g δ( x ) ∈ L 2 ( �) 
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which satisfies ∥∥g − g δ
∥∥ ≤ δ (1.4) 

where ‖ · ‖ denotes the L 2 norm and the constant δ > 0 represents 

noise level. 

According to the Hadamard requirements (existence, unique- 

ness and stability of the solution), the inverse problem is ill-posed 

mathematically. For stable reconstruction, we require some regu- 

larization techniques see [1] . 

If α = 1 , the problem is inverse problem for standard diffusion 

equation and has been studied in [2–4] . However, for the fractional 

inverse source problem, there are only very few works; [5] ob- 

tained the uniqueness in determining diffusion coefficient on the 

basis of Gel’fand-Levitan theory. Sakamoto and Yamamoto [6] de- 

rived the regularity and qualitative properties of solution to frac- 

tional diffusion-wave equation. Jiang et al. [7] proved uniqueness 

and Fujishiro and Kian [8] studied stability of the inverse problem 

of determining a source term with interior measurements in frac- 

tional diffusion equation. 

When q (t) = 1 , a number of regularization techniques including 

Tikhonov regularization and a simplified Tikhonov regularization 

method [9] , quasi-reversibility method [10] , truncation method 

[11] have been applied for the inverse source problem for frac- 

tional diffusion equation. According to our knowledge, there are 

few articles dealing the source term with q ( t ) such as modi- 

fied quasi-boundary value method [12] , Tikhonov regularization 

method [13] and the Fourier transform method [14] . 

The generalized Tikhonov regularization [3] and the revised 

generalized Tikhonov regularization [4] have been proposed 

for solving the inverse problems for usual partial differential 

equations.Yang et al. [15] constructed generalized regularization 

method for inverse source problem for space-fractional diffusion 

equation. Zhang and Zhang [16] used generalized Tikhonov method 

to solve backward time-fractional diffusion problem. 

Motivated by above reasons, in this article, we propose general- 

ized and revised generalized Tikhonov regularization methods for 

inverse source problem for time-fractional diffusion equation with 

variable coefficients in a general bounded domain. We establish a 

convergence estimates under an a-priori and a-posteriori regular- 

ization parameter choice rules. All the numerical results are based 

on the a posteriori parameter choice rule which is independent of 

the a priori bound of the exact solution. It is more useful in prac- 

tical issues. 

The paper is organized as follows. In Section 2 , we simply re- 

call some preliminaries. In Section 3 we construct the regular- 

ized solutions by the generalized Tikhonov regularization method 

and give convergence estimates under an a-priori and a-posteriori 

regularization parameter choice rules. In Section 4 we establish 

the revised generalized Tikhonov regularization method and give 

convergence estimates under two regularization parameter choice 

rules. Finally numerical example and its simulation are exploited 

to demonstrate the usefulness and effectiveness of the methods. 

2. Preliminaries 

In this section, we recall basic definitions and lemmas. 

Definition 2.1. [17,18] The Mittag–Leffler function is defined as 

E α,β (z) = 

∞ ∑ 

k =0 

z k 

�(αk + β) 
, z ∈ C , 

where α > 0 and β ∈ R are arbitrary constants. 

Lemma 2.2. [12 , Lemma 2.4] For α > 0 and β ∈ R, we have: 

E α,β ( z ) = zE α,α+ β ( z ) + 

1 

�( β) 
, z ∈ C. 

Lemma 2.3. [12 , Lemma 2.1] Let λ> 0, then we have: 

d 

dt 
E α, 1 (−λt α) = −λt α−1 E α,α(−λt α) , t > 0 , 0 < α < 1 . 

Lemma 2.4. [12 , Lemma 2.3] For 0 < α < 1, η > 0, we have 0 ≤
E α,α(−η) ≤ 1 

�(α) 
. Moreover, E α,α(−η) is a monotonic decreasing 

function with η > 0. 

Lemma 2.5. [12 , Lemma 2.6] For any λn satisfying λn ≥λ1 > 0, there 

exist positive constants C , depending on α, T, λ1 such that, 

C 

λn T α
≤ E α,α+1 (−λn T 

α) ≤ 1 

λn T α

Lemma 2.6. [12 , Remark 3.1] If q ( t ) ∈ C [0, T ] satisfying q ( t ) ≥ q 0 > 0 

for all t ∈ [0, T ], set ‖ q ‖ C[0 ,T ] = sup 

t∈ [0 ,T ] 
| q (t) | . Then we have: 

q 0 C 

λn 
≤

∫ T 

0 

q (τ )(T − τ ) α−1 E α,α(−λn (T − τ ) α) dτ ≤ ‖ 

q ‖ C[0 ,T ] 

λn 

(2.1) 

Proof. By using previous lemmas it is easy to prove (2.1) . We omit 

the details here. �

Lemma 2.7. For constants p > 0, μ> 0, s ≥λ1 > 0, we have 

F (s ) = 

s 

q 0 C (1 + μs p+1 ) 
≤ C 1 (q 0 C , p) μ− 1 

p+1 , (2.2) 

G (s ) = 

μs 
p 
2 +1 

1 + μs p+1 
≤ C 2 (p) μ

p 
2 p+2 , (2.3) 

H(s ) = 

‖ 

q ‖ C[0 ,T ] μs 
p 
2 

1 + μs p+1 
≤ C 3 ( ‖ 

q ‖ C[0 ,T ] , p) μ
p+2 

2 p+2 . (2.4) 

Proof. We know that, lim 

s → 0 
F (s ) = lim 

s →∞ 

F (s ) = 0 , thus F (s ) ≤
sup 

s> 0 

F (s ) ≤ F (s 0 ) , where s 0 > 0 such that F ′ (s 0 ) = 0 . It is easy 

to prove that s 0 = 

(
1 

pμ

)
1 /p+1 > 0 , then we have 

F (s ) ≤ F (s 0 ) = 

p 

q 0 C (p + 1) 
p −

1 
p+1 μ− 1 

p+1 = C 1 (q 0 C , p) μ− 1 
p+1 . 

Similarly, we can prove (2.3) and (2.4) . �

3. A generalized Tikhonov regularization method 

Denote the eigenvalues of the operator −L as λn which satisfy 

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn ≤ · · · , lim n →∞ 

λn = + ∞ , and the cor- 

responding eigenfunctions as X n (x ) ∈ H 

2 (�) ∩ H 

1 
0 
(�) form an or- 

thonormal basis in L 2 ( �). 

As in [6] , the fractional power (−L ) γ is defined for γ ∈ 

R and for example D ((−L ) 
1 
2 ) = H 

1 
0 
(�) . We set ‖ u ‖ D ( ( −L ) γ ) = ‖ 

(−L ) γ u ‖ L 2 (�) . We note that the norm ‖ u ‖ D ((−L ) γ ) is stronger than 

‖ u ‖ L 2 (�) for γ > 0. 

Define 

D 

(
( −L ) 

γ
)

= 

{ 

ψ ∈ L 2 ( �) ;
∞ ∑ 

n =1 

λ2 γ
n | ( ψ, X n ) | 2 < ∞ 

} 

, 

where ( · , · ) is the inner product in L 2 ( �), then D ((−L ) γ ) is a 

Hilbert space with the norm 

‖ ψ ‖ D ( ( −L ) 
γ ) = 

( 

∞ ∑ 

n =1 

λ2 γ
n | ( ψ, X n ) | 2 

) 

1 
2 

. 
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