
Chaos, Solitons and Fractals 108 (2018) 49–56 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

Fixed-time synchronization of hybrid coupled networks with 

time-varying delays 

Chuan Chen 

a , Lixiang Li a , ∗, Haipeng Peng 

a , Jürgen Kurths b , Yixian Yang 

a , c 

a Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 

100876, China 
b Potsdam Institute for Climate Impact Research, Potsdam 14473, Germany 
c State Key Laboratory of Public Big Data, Guizhou 550025, China 

a r t i c l e i n f o 

Article history: 

Received 30 June 2016 

Revised 16 January 2018 

Accepted 19 January 2018 

Keywords: 

Fixed-time synchronization 

Hybrid coupled networks 

Delay-dependent feedback controllers 

a b s t r a c t 

In this paper, we study the fixed-time synchronization of hybrid coupled networks, which have only one 

transmittal delay in the delayed coupling terms. The settling time of fixed-time synchronization can be 

adjusted to some desired values in advance regardless of the initial conditions. By constructing suitable 

Lyapunov functions and designing delay-dependent feedback controllers, we derive several novel syn- 

chronization criteria, which guarantee the considered hybrid coupled networks can achieve fixed-time 

synchronization. Two numerical examples are given to show the effectiveness of our results. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Over the past decades, it has been shown that complex net- 

works [1–6] widely exist in the real world, such as World Wide 

Web, ecological networks, neural networks, electrical power grids, 

and so on. As the major collective behavior, the synchronization of 

complex networks has been extensively addressed due to its im- 

portant applications in secure communication [7] , image process- 

ing [8] , automatic control [9] , etc. 

Although there have been many results about the synchroniza- 

tion control [10–13] of complex networks, most of them focused 

on asymptotic synchronization [14–16] and exponential synchro- 

nization [17–19] , both of which can be incorporated in the cate- 

gory of infinite-time synchronization. However, in some engineer- 

ing fields, it is more valuable that the synchronization can be real- 

ized in finite time, which leads to the studies of finite-time syn- 

chronization [20–25] . Compared with infinite-time synchroniza- 

tion, finite-time synchronization intrinsically requires a faster con- 

vergence speed, what is more, the states of the drive system and 

the response system remain completely identical after some finite 

time, which is called the settling time. 

Note that a critical issue of finite-time synchronization is that 

the settling time is dependent on the initial synchronization er- 

ror of the considered systems. Therefore, different initial synchro- 

nization error corresponds to different settling time. However, the 
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initial conditions of many practical systems are usually impossi- 

ble to be estimated, which results in the inaccessibility of the set- 

tling time. To overcome this difficulty, Polyakov introduced the 

concept of fixed-time stability and obtained some important the- 

orems of fixed-time stability [26] . Different from common finite- 

time synchronization, the settling time of fixed-time synchroniza- 

tion is bounded by a fixed constant, which is independent of the 

initial synchronization error and can be estimated in advance once 

the suitable controller has been chosen. Up to now, there are few 

published papers dealing with the fixed-time synchronization of 

complex networks [27–29] . In [27] , the fixed-time synchroniza- 

tion of Cohen-Grossberg neural networks was studied. In [29] , the 

fixed-time synchronization of memristor-based BAM neural net- 

works was investigated. 

Since time delay is ubiquitous in nature, it is more meaning- 

ful to study the synchronization control of complex networks with 

time delay. The hybrid coupled complex networks considered in 

this paper have both internal delay and coupling delay, each of 

which is time-varying delay. It is noticed that if there is a sig- 

nal transmitted from node j to node i , in most literatures the de- 

layed coupling term is given by D (x j (t − τ (t)) − x i (t − τ (t))) [30–

32] . However, because the time delay only affects the variable that 

is being transmitted from one system to another system, it is more 

reasonable to deem D (x j (t − τ (t)) − x i (t)) as the delayed coupling 

term. The hybrid coupled complex networks with one single time- 

varying delay coupling were proposed in [14,33] , and it is illus- 

trated that this model is more consistent with the reality. Based 

on the assumption condition 0 ≤ ˙ τi (t) ≤ h < 1 , i = 1 , 2 and the as- 
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sumption that the inner coupling matrices D and D τ were positive 

semi-definitive diagonal matrices, the authors of Ref. [34] studied 

the finite-time synchronization of complex networks with one sin- 

gle time-varying delay coupling. 

As far as we know, the result on the fixed-time synchroniza- 

tion of hybrid coupled complex networks has not been reported 

in the literatures until now. Therefore, it is interesting to fill this 

gap. In this paper, we propose a new complex network model with 

one single time-varying delay coupling, which is more general than 

that proposed in Ref. [34] . By constructing appropriate Lyapunov 

functions and designing delay-dependent feedback controllers, sev- 

eral new and effective criteria are derived to ensure the synchro- 

nization of the considered hybrid coupled networks can be realized 

in fixed time and in finite time, and we remove some unnecessary 

assumption conditions. Meanwhile, we also prove that the consid- 

ered hybrid coupled networks can synchronize to its synchroniza- 

tion manifold in fixed time and in finite time. Two numerical ex- 

amples are given to verify the effectiveness of our theoretical re- 

sults. 

The rest of this paper is organized as follows. In Section 2 , 

some preliminaries are described. The main results are given in 

Section 3 . In Section 4 , two numerical examples are provided to il- 

lustrate the effectiveness of the obtained results. This paper is con- 

cluded in Section 5 . 

Notations. R n denotes the n -dimensional Euclidean space, 

R n × n is the set of n × n real matrices. The Euclidean norm 

is denoted as || · ||, accordingly, for vector x ∈ R n , ‖ x ‖ = 

√ 

x T x , 

where T denotes transposition; for matrix A ∈ R n × n , ‖ A ‖ = √ 

λmax (A 

T A ) . For vector e i (t) = (e i 1 (t) , e i 2 (t ) , . . . , e in (t )) T ∈ R n , 

‖ e i (t) ‖ 1 = 

∑ n 
j=1 

∣∣e i j (t) 
∣∣, sign (e i (t)) = (sign (e i 1 (t)) , sign (e i 2 (t)) , . . . , 

sign (e in (t))) T , sign T (e i (t)) = (sign (e i 1 (t)) , sign (e i 2 (t)) , . . . , 

sign (e in (t))) , i = 1 , 2 , . . . , N. 

2. Preliminaries 

In this paper, we propose a new delayed hybrid coupled 

network consisting of N nodes, each node of which is an n - 

dimensional dynamical system 

˙ x i (t) = f (x i (t)) + g(x i (t − τ1 (t))) + 

N ∑ 

j =1 , j � = i 
G i j D ( x j ( t) − x i ( t)) 

+ 

N ∑ 

j =1 , j � = i 
G i j D τ (x j (t − τ2 (t)) − x i (t)) , i = 1 , 2 , . . . , N, (1) 

where x i (t) = (x i 1 (t) , x i 2 (t ) , . . . , x in (t )) T ∈ R n is the state variable 

of the i th node; f, g : R n → R n are continuous differentiable vector 

functions; τ 1 ( t ) and τ 2 ( t ) are the internal delay and the coupling 

delay respectively, and τ is the upper bound of τ 1 ( t ) and τ 2 ( t ); D 

and D τ are the inner coupling matrices between node i and node j 

at time t and t − τ2 (t) , respectively; G = (G i j ) N×N is the configura- 

tion matrix that satisfies the following conditions: 

G i j = G ji ≥ 0 , i � = j, G ii = −
N ∑ 

j =1 , j � = i 
G i j , (2) 

where G ij > 0 if there exists a connection between node i and node 

j , and G i j = 0 otherwise. The initial condition of system (1) is given 

by x i (t) = φi (t) ∈ C([ −τ, 0] , R n ) , where C([ −τ, 0] , R n ) denotes the 

Banach space of continuous functions mapping [ −τ, 0] into R n . 

We refer to system (1) as the drive system, then the corre- 

sponding response system can be written as follows: 

˙ y i (t) = f (y i (t)) + g(y i (t − τ1 (t))) + 

N ∑ 

j =1 , j � = i 
G i j D ( y j ( t) − y i ( t)) 

+ 

N ∑ 

j =1 , j � = i 
G i j D τ (y j (t − τ2 (t)) − y i (t)) + u i (t) , 

i = 1 , 2 , . . . , N, (3) 

where y i (t) = (y i 1 (t) , y i 2 (t ) , . . . , y in (t )) T ∈ R n denotes the response 

state variable associated with the i th node, u i (t) , i = 1 , 2 , . . . , N, are 

the appropriate controllers. The initial condition of system (3) is 

given by y i (t) = ϕ i (t) ∈ C([ −τ, 0] , R n ) . 

Based on condition (2) , we rewrite systems (1) and (3) as fol- 

lows: 

˙ x i (t) = f (x i (t)) + g(x i (t − τ1 (t))) + 

N ∑ 

j=1 

G i j Dx j (t) 

+ 

N ∑ 

j=1 

G i j D τ (x j (t − τ2 (t))) 

−G ii D τ (x i (t − τ2 (t)) − x i (t)) , i = 1 , 2 , . . . , N, (4) 

˙ y i (t) = f (y i (t)) + g(y i (t − τ1 (t))) + 

N ∑ 

j=1 

G i j Dy j (t) 

+ 

N ∑ 

j=1 

G i j D τ (y j (t − τ2 (t))) 

−G ii D τ (y i (t − τ2 (t)) − y i (t)) + u i (t) , i = 1 , 2 , . . . , N. (5) 

The synchronization errors are defined as e i (t) = y i (t) −
x i (t) , i = 1 , 2 , . . . , N, then we can derive the following error sys- 

tem: 

˙ e i (t) = f (y i (t)) − f (x i (t)) + g(y i (t − τ1 (t))) 

−g(x i (t − τ1 (t))) + 

N ∑ 

j=1 

G i j De j (t) 

+ 

N ∑ 

j=1 

G i j D τ (e j (t − τ2 (t))) − G ii D τ (e i (t − τ2 (t)) 

−e i (t)) + u i (t) , i = 1 , 2 , . . . , N. (6) 

Throughout this paper, the following assumptions [35] are 

needed. 

A1. For ∀ x, y ∈ R n , there exists a non-negative constant α such 

that 

‖ f (x ) − f (y ) ‖ ≤ α‖ x − y ‖ . 

A2. For ∀ x, y ∈ R n , there exists a non-negative constant β such 

that 

‖ g(x ) − g(y ) ‖ ≤ β‖ x − y ‖ . 

Lemma 1 ( [36] ) . Let x 1 , x 2 , . . . , x N ≥ 0 , p > 1 , 0 < q ≤ 1 , then the 

following two inequalities hold: 

N ∑ 

i =1 

x p 
i 

≥ N 

1 −p 

( 

N ∑ 

i =1 

x i 

) 

p , 

N ∑ 

i =1 

x q 
i 

≥
( 

N ∑ 

i =1 

x i 

) 

q . 

Lemma 2 ( [37] ) . (Chain Rule) If V ( x ): R n → R is C - regular and x ( t ) 

is absolutely continuous on any compact subinterval of [0 , + ∞ ) , then 

x ( t ) and V (x (t)) : [0 , + ∞ ) → R are differentiable for a.a.t ∈ [0 , + ∞ ) , 

and 

d 

dt 
V (x (t)) = v (t) ̇ x (t) , ∀ v (t) ∈ ∂V (x (t)) , (7) 

where ∂V ( x ( t )) is the Clarke generalized gradient of V at x ( t ) . 
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