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The paper is devoted to the study of cardiac rhythm variability (CRV) using the phase and extended phase 

spaces of instantaneous cardiac rhythm (ICR) obtained from the Holter monitoring (HM) data. In order 

to construct these spaces, a software package is developed and implemented. With specific references, 

the fractality of the ICR phase space is demonstrated. The fractal phase space volume and fractal entropy 

definitions of ICR are given. The paper justifies their availability for CRV quantitative assessment. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Today the basic approach to the assessment and prediction of 

fatal cardiovascular complication development risk is the analysis 

of cardiac rhythm variability (CRV). The Consensus of the Work- 

ing Group on CRV study of the European Society of Cardiology and 

the North American Society of Pacing and Electrophysiology states 

the regulations for the clinical relevance of CRV analysis in patients 

suffering from ischemic heart disease. According to this document, 

decreased CRV is an independent predictor of increased risk of for- 

mation of life threatening arrhythmias and sudden cardiac death 

(SCD) from myocardial infarction [1] . The latter is a major problem 

both medically and sociologically, since its incidence is very high. 

Every year about 40 0,0 0 0 Americans die suddenly, among them 

250,0 0 0 die from phenomena classified as SCD. 

The powerful CRV research methods include mathematical ones. 

They allow one to identify and use hidden and important regular- 

ities observed in the course of CRV studies. One of the first papers 

in this area was written by R. M. Bayevsky et al. [2] . At present a 

prominent place in this area is occupied by the papers dedicated to 

CRV study based on the fractal and chaos theory [3–6] . Our paper 

considers the further development of this research trend. 

One of the upcoming CRV study trends is the instantaneous car- 

diac rhythm (ICR) analysis [7,8] in different time intervals: short 

(lasting for 1–2 min), medium (within about 1 h) and long (last- 
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ing for a day and longer). In order to perform this analysis, new 

high performance techniques for Holter monitoring (HM) big data 

[7,8] analysis are required. 

For this purpose we will construct the phase and the extended 

phase spaces of ICR. Basing on the fractality of the PS of ICR and 

allowing for the fractal properties, the values of its fractal phase 

space volume � and the corresponding value of fractal entropy S 

will be introduced. At that, we will demonstrate that the values 

of fractal dimension D , fractal phase space volume � and fractal 

entropy S of ICR adequately reflect the CRV. 

Let i be an RR -interval number, i = 1 , 2 , 3 , . . . N. Upon the expi- 

ration of 24 h of HM, the N value will essentially exceed 10 0 , 0 0 0 . 

The time points t i will correspond to ECG R -wave peaks. Then 

T RR i 
= t i +1 − t i , and the ICR values y i in time points t i will be as 

follows: 

y i = 

60 

T RR i 

= 

60 

t i +1 − t i 
. (1) 

In Eq. (1) , the time points t i are measured in seconds, and the ICR 

values y i in min 

−1 . 

In the time interval t i ≤ t ≤ t i +1 , the equation of ICR curve can 

be presented as follows: 

y (t) = y i + 

y i +1 − y i 
t i +1 − t i 

(t − t i ) . (2) 

Together with y ( t ), let us introduce the ICR change rate v ( t ). 

From this point on, the numerical values of functions y ( t ) and v ( t ) 

will be represented in min 

−1 and sec −1 respectively. At the point t i , 

we define the values v i of the function v ( t ) as a difference deriva- 
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Fig. 1. A phase space of ICR. 

tive of the function y ( t ): 

v i = 

y i +1 − y i 
t i +1 − t i 

. (3) 

Then in the interval t i ≤ t ≤ t i +1 , the function v ( t ) is given by 

v (t) = v i + 

v i +1 − v i 
t i +1 − t i 

(t − t i ) . (4) 

The functions y ( t ) and v ( t ) contain the exhaustive information on 

the ICR pattern in the time interval of interest, and in the future 

we will use them for constructing the phase space of ICR. 

2. The ICR phase space 

From this point on, we will use the concept of the ICR phase 

space to the same significance as in theory of dynamic systems. 

The phase space is a space of all possible system states to each 

of which a phase space point, or a phase point corresponds. The 

phase point coordinates give a quantitative description of the basic 

system parameters, in this case the ICR at the given time moment. 

The dynamic system evolution will be described by the motion of 

the phase point along the phase trajectory. In the Newtonian me- 

chanics, in the theory of differential equations, and in the theory 

of dynamic systems, the phase trajectories are smooth manifolds. 

In the case of ICR, they do not have this property. By specific ex- 

amples we will show that the phase trajectories of ICR are remi- 

niscent of Brownian motion trajectories and thus are fractal curves. 

We will call the set of points M in R 

2 with orthogonal coor- 

dinates y ( t ) and v ( t ) a phase space (PS) of ICR. The points of this 

space adequately reflect all characteristics of ICR in the time inter- 

val of interest. 

Let us illustrate this definition in Fig. 1 . 

The line −v m 

≤ v ≤ v m 

separates the phase space of ICR into 

two regions: the region of normal ICR, where | v | ≤ v m 

, and the re- 

gion of ICR jumps (catastrophes), where | v | > v m 

. 

Let us evaluate v m 

according to the ratio: 

| v i | < 

1 

60 

∣∣∣∣T RR i +1 

T RR i 

− 1 

∣∣∣∣
(

1 −
∣∣∣∣T RR i +1 

T RR i 

− 1 

∣∣∣∣
)−1 

y 2 i 

In cardiointervalography, for a patient being in normal condi- 

tion max | T RR i +1 
/T RR i 

− 1 | < 0 . 1 , y i < 90. Then we the following esti- 

mate takes place: v m 

= max | v i | = 15 . 

If v m 

∼ 1, then y ( t ) can be described in terms of a piecewise lin- 

ear trend and small deviations from it. When v m 

increases by an 

order of magnitude, i.e. to the value v m 

∼ 10 and greater, such sep- 

aration becomes impossible. A brand new ICR state arises which is 

called a region of ICR jumps (catastrophes) [9] . 

In Ref [9] , it was demonstrated that the catastrophes in mul- 

tifractal dynamic systems could be more adequately described 

within the framework of the multifractal dynamics (MFD) model. 

Fig. 2. The phase space of ICR for the first patient. 

Fig. 3. The ICR phase space for the second patient. 

HM data recording and analysis were performed using complex 

”Kardiotekhnika-04” (from INKART, St. Petersburg) and the pro- 

gram system developed by the corporate authors. As the experi- 

ence shows, the ICR states on the phase diagram visually differ if 

N ≤ 150, which is equivalent of a time interval of the order of 1–2 

min. 

Consider an example of constructing the PS of ICR for one of 

the patients of Tver Regional Cardiology Health Center for the HM 

time interval of 1.5 min. It is demonstrated in Fig. 2 . 

In this figure, the heavy point reflects the phase point position 

at an arbitrary point of observation time. Directly in Fig. 2 , it is dif- 

ficult to observe some phase point dynamics. As a consequence we 

wrote down the real-time ICR phase point motion animation ap- 

plication. The visual observation of the phase point motion pattern 

allows performing detailed analysis of ICR dynamics and, conse- 

quently, the patient cardiovascular system condition. As seen from 

Fig. 2 , the phase point trajectory has a Brownian pattern in a qual- 

ity manner and would be a fractal curve. Hereafter we will confirm 

this property by symbolic-numeric calculations. 

For comparison, we also construct the PS of ICR for the second 

patient of Tver Regional Cardiology Health Center ( Fig. 3 ) according 

to the HM data for the similar time interval of 1.5 min, as in the 

case of the first patient. 

By comparison of the phase trajectory patterns in Figs. 2 and 

3 , we can see that in the case of the second patient, the phase 

trajectory of ICR is more chaotic, i.e., the fractal dimension D is 

expected to be essentially higher. 

As seen from Fig. 3 , during the most of the time the phase point 

is located in the ICR jump region | v | > v m 

. 

3. The extended ICR phase space 

Together with the PS of ICR, let us introduce the extended 

phase space (EPS) of the ICR. For this purpose, let us introduce the 

values of n i , the number of repeatability of points with coordinates 

y i and v i . We will construct the function n ( t ) similarly to the func- 

tions y ( t ) and v ( t ). In the time interval t i ≤ t ≤ t i +1 let us assume 
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