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a b s t r a c t 

Tailoring the propagation of light in an arbitrarily manner has motivated a great of interest on nanopho- 

tonics. As a new mechanism for this purpose, the generation of an effective magnetic field leading to a 

Lorentz force for photons is recently proposed in a photonic resonator lattice. Here, we consider a pho- 

tonic resonator lattice with a harmonically modulated phase and with an interface splitting the lattice 

into two magnetically different regions. Considering this lattice, we try to explore the impact of phase 

and the location of interface on the localization of Hamiltonian eigenstates by applying level spacing dis- 

tribution as a cornerstone of random matrix theory. The obtained results show that while the location of 

interface has no effect on the appearance of localized states in weak phases, in strong phases it is found 

a threshold value for location of interface above which all eigenstates are delocalized. As a result, level 

spacing distribution and so random matrix theory is capable of characterizing the behavior of a photon 

in regions with different magnetic properties. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Thanks to fundamental breakthroughs and disruptive applica- 

tions, optics and the science of light has been a focus of great in- 

terest in past decades [1] . Discovering that Anderson localization 

is a wave phenomenon paved the way towards the application of 

localization and control concepts to electromagnetic [2,3] and es- 

pecially to light waves [4–6] . Regulating the propagation of light is 

critical for potential applications in on-chip communications, infor- 

mation processing, biotechnology, medicine and the modern-day 

telecommunications industry [7–9] . In this regard, the past decade 

has witnessed considerable progress in nanophotonics, as the main 

optics-related discipline to study the light-matter interaction [10] , 

an in developing synthetic materials and nano-scale photonic de- 

vices capable of guiding light in a controllable manner [11] . Despite 

the difficulty of tailoring the propagation of light with light, due 

to vanishing photon-photon interaction cross sections [12] , various 

approaches have been proposed to this end with the help of non- 

linear optical effects [13,14] , optical resonators [15] , exciton polari- 

tons [16,17] , or with the optical response of a two-level system in 

a single fluorescent molecule [18] . 

Regarding the electron transport, externally-applied electric 

and magnetic fields are of great importance for both the classi- 

cal and quantum regimes [19] , imposing a Lorentz force on the 
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classical level [20] and an integer and fractional quantum Hall ef- 

fects [21,22] on the quantum level. Despite electrons, photons do 

not carry electrical charge, and therefore there is no natural gauge 

potential which couples to a photon [23] . Realizing similar mecha- 

nisms for guiding light in a controllable way is a rapidly rising field 

of research, addressing the establishment of photonic phenomena 

due to the effective magnetic field (EMF) similar to charged parti- 

cles subjected a real magnetic field [24] . On this matter, different 

approaches covering harmonically modulating the refractive index 

of the photonic crystal [23] , and harmonically modulating coupling 

constants between the resonators in two [25,26] and three dimen- 

sions [27] were proposed in recent years. Accordingly, Aharonov- 

Bohm [23,28] , and the photonic de Haas-van Alphen [19] effects 

caused by an effective gauge field for photons were numerically 

and/or experimentally investigated. 

Thus far, less attention has been paid on the impact of the EMF 

on the localization and diffraction of photons in photonic devices. 

Regarding the importance of localization, the present study has 

aimed at tailoring and controlling the flow of light by Hamilto- 

nian engineering. For this purpose, besides investigating the dy- 

namics of the participation ratio we also turn our attention to 

the spectral fluctuations addressing stability/instability of optical 

modes [29] and compare obtained results with the predictions of 

random matrix theory. Random matrix theory, firstly established 

by Wigner [30] , can be applied to unveil the underlying physics of 

complex systems and gives a transparent characterization based on 

the fluctuation measures of the states. 
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Fig. 1. The schematic picture of a dynamically modulated photonic resonator lattice with an interface separating left region (without EMF) from right region (exhibiting an 

EMF). The square sublattice of resonators with frequency ω A ( ω B ) is denoted by yellow (green) diamond. The light black lines represent nearest-neighbor couplings with zero 

phase of the coupling. The Bold black vertical lines hold for non-zero phase of the coupling proportional to column index with flipping feature between two neighboring 

bonds within the same column. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

The remaining of the manuscript is assembled as follows. 

Section 2 describes the studied Hamiltonian. Section 3 is devoted 

to the characterization of the localization of eigenstates by focus 

on the dynamics of the participation ratio. Section 4 contains the 

fluctuation statistics of levels by a direct attention on level spac- 

ing distribution. Finally, the obtained observations are concluded 

in Section 5 . 

2. Tight-binding model 

The tight-binding model describing the creation of an EMF for 

photons in a two-dimensional photonic resonator lattice [25] with 

24 resonators is depicted in Fig. 1 . Each square unit cell of the lat- 

tice contains two resonators A (symbolized by yellow diamonds) 

and B (symbolized with green diamonds) with different frequen- 

cies ω A and ω B , respectively. Notably that only nearest-neighbor 

coupling with a harmonically modulated feature between the two 

sublattices are considered. The Hamiltonian of the described res- 

onator lattice is read as 

H = ω A 

∑ 

i 

a † 
i 
a i + ω B 

∑ 

j 

b † 
j 
b j 

+ 

∑ 

<i j> 

V cos (�t + φi j )(a † 
i 
b j + b † 

j 
a i ) , (1) 

where a 
† 
i 
(a i ) and b 

† 
j 
(b j ) create (annihilate) a photon in the i th 

and j th resonators from the A and B sublattices, respectively, the 

< ij > represent that i and j are nearest neighboring sites. V = 2 

[25] holds for the coupling strength, � is the modulation fre- 

quency. And, φij stands for the phase of the modulation between 

adjacent resonators at sites i and j . Here we perform our study on 

a square lattice with 40 resonators in each direction. 

In the rotating wave approximation V �� provided that the 

modulation is on resonance � = | ω A − ω B | = 100 [25] , the counter 

rotating term of Hamiltonian can be discarded [19] . In this approx- 

imation we find 

H = 

∑ 

<i j> 

V 

2 

(e −iφi j c † 
i 
c j + e iφi j c † 

j 
c i ) , (2) 

where c i ( j) = e iω A (B ) t a i (b j ) . Hamiltonian ( Eq. (2) ) is similar to the 

Hamiltonian of a charged particle on a lattice imposed to a mag- 

netic field with the following association ∫ j 

i 

A e f f d l = φi j . (3) 

It is found that a uniform EMF, 

B e f f = 

1 

d 2 

∮ 
Plaquette 

A e f f d l = 

φ

d 2 
, (4) 

is imposed on photons by assigning the special distribution of the 

modulation phase as shown in Fig. 1 , where it is supposed that all 

bonds along the horizontal and vertical directions, denoted by light 

lines, have zero phases. Bold lines along the vertical direction rep- 

resent location-dependent modulation phases [25] . d is the spatial 

distant between any two adjacent resonators. 

3. Localization of eigenstates 

As respects the manipulation of photon propagation, diffraction 

of light beams brings an additional obstacle [31] . In this regard, the 

localization of light draws considerable attention [32] . While An- 

derson explored the localization theory in disordered and periodic 

scattering lattices [33] , the past two decades have witnessed grow- 

ing attention on the observation of localization in lattices without 

any defects [34–38] . 

One of the striking features of the states under sufficiently 

strong magnetic fields in disordered dense atomic systems is their 

localization [39,40] . In addition to the magnetic field, we try here 

to reveal the impact of location of interface (LI) on the localization 

properties of eigenstates of the defined system (see Fig. 1 ). LI is the 

exact location of the Interference that separation the phases, based 

on the site numbers. To characterize a state | �(n ) > = 

∑ 

i C 
(n ) 
i 

| ψ i > 

pertinent to the n th eigenvalue in quantum regime, it is common 

to chose the participation ratio ( P R (n ) = 

1 ∑ 

i | C (n ) 
i 

| 4 ) as a well-known 

measure of localization. PR ( n ) , reflecting some valuable information 

about the spatial distribution of the eigenstate | �( n ) > expanded 

in the basis vectors | ψ i > of the corresponding Hilbert space, mea- 

sures how extended a given state is in the defined basis. Thus for 

a completely localized state, i.e., a state similar to one of the basis 

vectors, PR equals 1. In contrast, for a fully extended state, i.e., a 

state with uniform superposition of all the basis vectors, PR equals 

the size of the corresponding basis. 
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