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a b s t r a c t 

The residual symmetries for the third-order Burgers equation are obtained with the truncated Painlevé

method. The nonlocal symmetries can be localized to the Lie point symmetries by introducing auxiliary 

dependent variables and the corresponding finite transformations are computed directly. New exact solu- 

tions of the third-order Burgers equation is also proved to have the consistent tanh expansion form. New 

exact interaction excitations such as soliton-cnoidal wave solutions and soliton-periodic wave solutions 

are given out analytically and graphically. 
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1. Introduction 

As well known, the Burgers hierarchy can be written in the 

form 

u t = K m 

(u ) = (∂ x + u + u x ∂ 
−1 
x ) m −1 u x , m = 1 , 2 , 3 , · · · , (1) 

which is of great importance in nonlinear theory and has wide ap- 

plications in many physical fields [1–7] . In particular, if m = 3 , then 

we have the third-order Burgers equation, that is to say, 

u t = (∂ x + u + u x ∂ 
−1 
x ) 2 u x = 3 uu xx + 3 u 

2 
x + 3 u 

2 u x + u xxx . (2) 

The Eq. (2) is also the well-known Sharma–Tasso–Olver equation, 

which has been studied extensively in many papers [8–12] . For 

convenience, we change the form of the Eq. (2) by the transforma- 

tion t → −t, then the third-order Burgers equation or the Sharma–

Tasso–Olver equation becomes 

u t + 3 uu xx + 3 u 

2 
x + 3 u 

2 u x + u xxx = 0 , (3) 

which arises in many physical and engineering fields, such as the 

fluid mechanics, plasma physics and statistical physics and so on. 

The Painlevé property, recursion operator method and Bäcklund 

transformation for the third-order Burgers equation are studied 

in [7] . The authors obtained the fission and fusion of the soli- 

tary wave and the soliton solutions of the Eq. (3) by the means 
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of Hirota bilinear method in [12] . The modified simple equation 

method, the extended tanh expansion method and multi-soliton 

fusion and fission phenomenon of the Eq. (3) are studied in detail 

in [13–15] . 

Recently, abundant interaction solutions among solitons and 

other complicated waves including periodic cnoidal waves, 

Painlevé waves and Boussinesq waves for many integrable sys- 

tems were obtained by nonlocal symmetries reduction and the 

consistent tanh expansion method related to the Painlevé analysis 

[16–18] . Hinted at by the results of nonlocal symmetry reduction, 

Lou found that the symmetry related to the Painlevé truncated ex- 

pansion is just the residue with respect to the singular manifold in 

the Painlevé analysis procedure and called residual symmetry [19] . 

Furthermore, the author proposed a simple effective method, the 

consistent tanh expansion (CTE) method in [20] , which is based 

on the symmetry reductions with nonlocal symmetries. The CTE 

method can be used to identify CTE solvable systems and it is a 

more generalized but much simpler method to look for new in- 

teraction solutions between a soliton and other types of nonlinear 

excitations [21–23] . 

In this paper, we focus on the residual symmetry and interac- 

tion solutions for the third-order Burgers or Sharma–Tasso–Olver 

Eq. (3) . In Section 2 , the residual symmetry related to the Painlevé

truncated expansion, which is called nonlocal symmetry, is ob- 

tained and the corresponding finite transformation is derived 

by solving the initial value problem of the enlarged system. 

Section 3 is devoted to the consistent tanh expansion method 
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for the third-order Burgers equation and different interaction 

solutions among different nonlinear excitations such as cnoidal 

periodic waves and solitary waves are given both analytically and 

graphically. Last section is summary and discussions. 

2. Residual symmetry and its localization 

In this section, the standard WTC approach is applied briefly to 

demonstrate that the third-order Burgers equation (3) can pass the 

Painlevé test. Let us introduce the Laurent series as 

u = 

∞ ∑ 

j=0 

u j φ
j+ α, (4) 

with a sufficient number of arbitrary functions among u j in ad- 

dition to the arbitrary function φ and the negative integer α = 

−1 by the leading order analysis. Substituting the Eq. (4) into 

the Eq. (3) with α = −1 , we find the three resonances located 

at j = −1 , 1 , 3 corresponding to the arbitrariness of three func- 

tions { φ, u 1 , u 3 } according to the standard WTC method. Then the 

third-order Burgers Eq. (3) can be proved to be Painlevé integrable 

[7] and the truncated Painlevé expansion reads 

u = 

u 0 

φ
+ u 1 , (5) 

Substituting (5) into the Eq. (3) and collecting the coefficients of 

different powers of φ j , ( j = 0 , −1 , −2 , −3 , −4) , we have 

u 0 = φx , (6) 

3 φ2 
x u 1 x + 3 u 

2 
1 φ

2 
x + 3 u 1 φxx φx + φxxx φx + φx φt = 0 , (7) 

u 1 t + 3 u 1 u 1 xx + 3 u 

2 
1 x + 3 u 

2 
1 u 1 x + u 1 xxx = 0 . (8) 

It is clear that Eq. (8) is just (3) with the solution u 1 and the resid- 

ual u 0 is the symmetry corresponding to the solution u 1 based on 

the residual symmetry theorem in [24] . So the truncated Painlevé

expansion 

u = 

φx 

φ
+ u 1 , (9) 

is an auto-Bäcklund transformation between the solutions u and u 1 
if the latter is related to φ by Eq. (7) . 

For the nonlocal symmetry (6) , the corresponding initial value 

problem is 

d ̂  u 

dε
= 

ˆ φx , ˆ u (ε) | ε=0 = u, (10) 

with ε being an infinitesimal parameter. However, it is very diffi- 

cult to solve the Eq. (10) for the new functions ū (ε) due to the in- 

trusion of the function φ̄ and its derivatives. In order to solve this 

initial value problem, we prolong the third-order Burgers equation 

such that the nonlocal symmetries become the local symmetries 

for the prolonged system by introducing another five new depen- 

dent variables as the following 

φx = g, g x = h, h x = m, φt = k, k x = l. (11) 

Now the nonlocal symmetry (6) for the third-order Burgers 

Eq. (3) becomes a Lie point symmetry of the prolonged system in- 

cluding (7), (8) and (11) . Then the linearized equations of the pro- 

longed system of (7), (8) and (11) are as follows 

σ g = σφ
x , σ h = σ g 

x , σ k = σφ
t , σ m = σ h 

x , σ l = σ k 
x , (12) 

σ u 1 
t + 3 u 

2 
1 σ

u 1 
x + 6 u 1 σ

u 1 u 1 x + 6 u 1 x σ
u 1 
x + 3 u 1 σ

u 1 
xx + 3 σ u 1 u 1 xx 

+ σ u 1 
xxx = 0 , (13) 

φx σ
φ
xxx + σφ

x φxxx + 3 φx σ
u 1 φxx + 3 σφ

x u 1 φxx + 6 φx σ
φ
x u 1 x + 6 φx u 

2 
1 σ

φ
x 

+ 6 u 1 σ
u 1 φ2 

x + 3 φx u 1 σ
φ
xx + 3 φ2 

x σ
u 1 
x + σφ

x φt + φx σ
φ
t = 0 . (14) 

One can easily deduce that the solution of (12), (13) and (14) has 

the form 

σφ = −φ2 , σ u 1 = g, σ g = −2 gφ, σ h = −2 g 2 −2 φh, σ k = −2 kφ, 

(15) 

σ m = −6 gh − 2 mφ, σ l = −2 kg − 2 lφ. (16) 

Correspondingly, the initial value problem becomes 

d ˆ u 1 

dε
= 

ˆ g , 
d ̂  φ

dε
= − ˆ φ2 , 

d ̂  g 

dε
= −2 ̂

 g ̂  φ, 
d ̂ h 

dε
= −2 ̂

 g 2 −2 ̂

 h ̂

 φ, 

d ̂ k 

dε
= −2 ̂

 k ̂  φ, 
d ̂  m 

dε
= −6 ̂

 g ̂ h − 2 ̂

 m ̂

 φ, 
d ̂ l 

dε
= −2 ̂

 k ̂  g − 2 ̂

 l ̂  φ, 

ˆ u 1 (ε) | ε=0 = u 1 , ˆ φ(ε) | ε=0 = φ, ˆ g (ε) | ε=0 = g, ˆ h (ε) | ε=0 = h, 

ˆ k (ε) | ε=0 = k, ˆ m (ε) | ε=0 = m, ˆ l (ε) | ε=0 = l, 

then the solutions of the enlarged system (7), (8) and (11) can be 

written as 

ˆ φ = 

φ

1 + εφ
, ˆ u 1 = u 1 + 

εg 

1 + εφ
, ˆ g = 

g 

(1 + εφ) 2 
, ˆ k = 

k 

(1 + εφ) 2 
, 

ˆ h = 

h 

(1 + εφ) 2 
− 2 εg 2 

(1 + εφ) 3 
, ˆ l = 

l 

(1 + εφ) 2 
− 2 εkg 

(1 + εφ) 3 
, 

ˆ m = 

m 

(1 + εφ) 4 
+ 

6 ε2 g(g 2 − hφ) + mφ2 ε2 + 2 εmφ − 6 εgh 

(1 + εφ) 4 
, 

(17) 

where { u 1 , φ, g, h, k, m, l } is a solution of the prolonged system (7), 

(8) and (11) and ε is an infinitesimal parameter. It is interesting 

to see that the nonlocal symmetry (6) coming from the truncated 

Painlevé expansion is just the infinitesimal form of the group (17) . 

3. Consistent tanh expansion solvability and interaction 

solutions 

For a given nonlinear polynomial system 

P ( x , t, u ) = 0 , x = (x 1 , x 2 , . . . , x n ) , (18) 

we aim to find the following possible truncated expansion solution 

u = 

n ∑ 

j=0 

u j tanh 

j 
(w ) , (19) 

where w is an undetermined function of ( x , t) , n should be deter- 

mined from the leading order analysis of the Eq. (18) and all the 

expansion coefficient functions u j should be determined by van- 

ishing the coefficients of different powers tanh ( w ) after substitut- 

ing the Eq. (19) into the nonlinear system (18) . If the obtained 

system for u j ( j = 0 , 1 , · · · , n ) and w are consistent, or not over- 

determined, we say that the expansion (19) is a consistent tanh 

expansion and the exact solutions of the given nonlinear system 

(18) have the consistent tanh expansion form. 

This effective and simple method has been used to find the 

interaction solutions between solitons and other types of nonlin- 

ear waves such as cnoidal periodic waves, Airy waves and so on 

[21–23] . By the leading order analysis for the third-order Burgers 

Eq. (3) , we can take the following truncated tanh function expan- 

sion 

u = u 0 + u 1 tanh (w ) , (20) 
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