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a b s t r a c t 

Wave propagation in a viscoelastic tube filled with viscous fluid is addressed. We show that the dissipa- 

tive Navier–Stokes equations can asymptotically be reduced to a pair of nonlinearly coupled complex 

Ginzburg–Landau equations. Modulational instability is then investigated analytically and numerically. 

The instability domain, using the growth rate, is shown to be importantly dependent on the vessel rela- 

tive stiffness and fluid viscosity. A comprehensive analysis is proposed to that effect, which is confirmed 

by direct numerical simulations. Dissipative trains of impulses are found as the main manifestation of 

modulational instability and results are recorded for some hemodynamic factors such as the pressure, 

velocity and vessel cross-section. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Nonlinear waves and solitons are found in any system where 

there is a competition between nonlinearity and dispersion. The 

physical systems where they appear span from biophysics to hy- 

drodynamics, through optical communication and material sci- 

ences. One of the most effective systems where solitons play a 

mayor role is blood vessels. In fact, from the seminal works of 

Yomosa [1] and Hashimuze [2] , it has been accepted and experi- 

mentally demonstrated that blood pressure waves are not differ- 

ent from solitary waves. This has been applied to large vessels by 

several authors, with emphasis on the nonlinear elasticity of the 

vessel wall, using some weakly nonlinear theories [3–7] . In the 

same vein, it was shown by several investigators that the appro- 

priate equation that gives a wave profile similar to experimental 

blood pulses was the Korteveg–de Vries (KdV) one [3,4,8] . In re- 

cent years, attention has also been paid to Mayer waves [9–12] , 

known as periodic fluctuations in blood pressure (BP), mainly in 

vasodepressor carotid sinus hypersensitivity [13] . Abnormal condi- 

tions, lack of oxygen, severe hemorrhage, and many other sudden 

changes in blood circulation, in organs and tissues, may be respon- 

sible for the appearance of Mayer waves [14,15] . The emergence 

of Mayer waves was recently predicted using a discrete nonlinear 

Schrödinger (NLS) equation, where it was considered that the am- 

plitude of the wave may be considered small-but-finite, and may 

vary both in space and time variables in presence of nonlinearity 
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and dispersion [16] . Nonlinear self-modulation in fluid-filled elastic 

tubes was already addressed by Ravindran and Prasad [17] , where 

the NLS equation was derived. Erbay and Erbay [18] also derived 

the dissipative NLS equation from nonlinear equations of fluid flow 

in viscoelastic thin tubes. Bakirta ̧s and Demiray [19] , adopting a 

viscous fluid flow in prestressed elastic tubes, showed the dynam- 

ics of modulated amplitude blood waves to be modeled by the dis- 

sipative NLS equation. 

Blood is a concentrated suspension of blood cells in plasma, and 

may display non-Newtonian behaviors [20] . These characteristics 

originate from the deformability and aggregation of red blood cells, 

and have strong impact on blood viscosity (BV). BV is a key factor 

for the normal operation of the circulatory system, and can change 

due to several factors such as the Hematocrit. In general, the varia- 

tions in BV are detected by the endothelium, leading to the activa- 

tion of vasoactive materials which includes nitric oxide, prostacy- 

clin and endothelin, capable of controlling BV, and the wall shear 

stress [21] . When the aforementioned compensation mechanism 

fails, blood exhibits hyperviscosity features, thrombosis can appear, 

with negative effects, and even damage, on the endothelium [22] . 

Many diseases are associated with BV, mainly because blood cell 

velocities drop, especially in diabetic patients [23,24] . The occlu- 

sions of the oxygen-transporting vessels cause tissue ischemia and 

necrosis, bringing in other factors like high blood pressure (BP). 

Indubitably, that may affect arterial distensibility/stiffness. How- 

ever, the correlation between arterial stiffness and blood viscosity 

is not yet well understood, although the measurement of arterial 

pulse wave velocity was used recently to that effect, with inter- 

est in isolated systolic hypertension, responsible for blood reflex- 

ion and pulse pressure [25] . Nevertheless, there are gathered evi- 
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dences that since the wall shear stress is highly sensitive to high 

BV, the risk for aneurysm formation, progression and rupture is 

high [26,27] . This may induce sudden changes in both heart rate 

and arterial pressure fluctuations, similar to Mayer wave, for exam- 

ple [9,10,14] . The aim of the present contribution is then to charac- 

terize such waves in the presence of BV and arterial stiffness [28] . 

As said so far, high arterial stiffness induces reflected blood waves. 

We therefore show that the suitable description of their amplitude 

and phase modulation may lead to a pair of nonlinearly coupled 

complex Ginzburg-Landau (CGL) equations. The CGL equation is, in 

fact, well known in the dynamics of nonlinear dissipative patterns, 

with application to nonlinear optics [29] , reaction-diffusion sys- 

tems [30] , neural networks [31,32] and molecular structures such 

as DNA and proteins [33–35] . Indeed, long-time envelope soliton 

dynamics may be satisfactorily described by both the NLS and CGL 

equations, which is not the case for modulated periodic stokes 

waves that may be explained exclusively using the CGL equation 

[29,36] . Modulated periodic waves, such as Mayer waves may arise 

in such system under the activation of modulational instability 

(MI), a consequence of the concomitant effects of nonlinearity and 

dispersion. MI is one of the direct mechanisms that lead to the 

formation of nonlinear waves, where a specific range of wavenum- 

bers of plane wave profiles of the form ϕ(x, t) ∼ exp [ i (kx − ωt)] 

becomes unstable to modulations. Unstable modes exponentially 

emerge, resulting to the formation in space and time of coherent 

solitary structures that appear in a broad range of physical systems 

[29,31,32,37–44] . The MI technique is adopted in this work, both 

analytically and numerically, to address the emergence of Mayer 

waves and, more importantly, their response to high BV and arte- 

rial stiffness variations. To proceed, we introduce the dissipative 

Navier–Stokes model that describes both the blood and arterial 

wall dynamics in Section 2 . Thereafter, the reductive perturbation 

expansion is used to show that amplitude equations are nonlin- 

early coupled CGL equations. In Section 3 , a comprehensive scheme 

of the MI analysis is presented, along with numerical confirmation 

of analytical predictions. Importance is given to the impact of BV 

and and arterial stiffness parameters on the waveforms of some 

hemodynamic factors such as blood pressure, blood velocity and 

arterial cross-section. Some concluding remarks are finally given in 

Section 4 . 

2. Governing equations and mathematical background 

The system under our study is made of simultaneous equations 

that couple the dynamics of the blood and the deformation of the 

arterial wall. Blood is in fact considered as an inviscid fluid flow- 

ing in a cylindrical elastic tube of reference radius A 0 , subjected 

to a uniform inner pressure P 0 . In the cylindrical coordinate for- 

mulation, i.e., ( r ∗, θ ∗, z ∗), where r and z are respectively the radial 

and longitudinal coordinates, we consider a one-dimensional field 

of longitudinal flow velocity W ( z ∗, t ∗), fluid pressure P ( z ∗, t ∗) and 

the radial displacement of the arterial wall A ( z ∗, t ∗). Based on the 

formulation proposed by Yomosa [1,45] , the equation of mass con- 

servation of the fluid may be written as 

∂W 

∂t ∗
+ W 

∂W 

∂z ∗
+ 

1 

ρ

∂P 

∂z ∗
= ν

(
−8 

W 

A 

2 
+ 
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, (1) 

where ρ and ν are the fluid density and kinematic viscosity, re- 

spectively. The above equation has been obviously modified to 

include viscous effects that are not considered in the simple 

Yomosa’s model [1] . In the course of blood flow in arteries, the red 

blood cells migrate to the central region of the artery and, thus, 

the hematocrit ratio drops near the arterial wall, where the shear 

rate is quite high, as usually obvious in Poiseuille flows. In order 

to derive the above equation and the ones that follow, Demiray 

[3] made use of the averaging method and additionally included 

variable cross-section. However, in this work, that last aspect is not 

considered. Moreover, the following equation of continuity stands 

for the incompressibility of blood: 
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Finally, the radial motion of the arterial wall is describes by the 

equation 

ρ0 H 
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obtained through the second law of Newton [1,16,46] . P is the pres- 

sure outside the vessel, δA is the vessel deformation, ρ0 represents 

the wall density. H and h stand for the effective inertial thickness 

and the thickness of the wall, respectively. γ is the viscoelastic- 

ity coefficient, β is the shear modulus, and ϕ is another coefficient 

of viscoelasticity. σ t is the approximated relation function for the 

stress-strain relationship proposed in [47,48] as 

σt = E 
δA 

A 

(
1 + aδA 

A 

)
, (4) 

where A (z) is the stationary radius of the vessel, E is the Young 

modulus and a represents the nonlinear coefficient of elasticity. In 

the context of weak wall displacements, the approximations 

A − A = δA = 

1 

2 

(u − 1) and A = 

1 

2 

(u + 1) (5) 

can be used, where u = 

s 
s 0 

and s 0 = πA 

2 
are the normalized cross 

sectional area of the tube and the cross sectional area at the en- 

trance. A 0 , ω 0 and E 0 are, respectively the reference values of ra- 

dius, velocity and Young modulus at the entrance of the vessel. We 

also introduce dimensionless parameters W → ω 0 v , P − P → p 0 p, 

t → t ∗T , and z → z ∗A 0 so that after substituting Eqs. (4) and (5) into 

(2) and (3) , we obtain the following set of dimensionless equations 

both for the fluid and the tube: 
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where η1 = 

32 A 0 ν
ω 0 

and η2 = 

ν
A 0 ω 0 

are the viscosity coefficients, 

a 1 = 
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ρω 0 
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, with 

� = ρω 

2 
0 

A 0 (E 0 h 0 ) 
−1 and s t = A 0 /T ω 0 being the relative stiffness of 

the vessel and the Strouhal number, respectively. For the descrip- 

tion of modulated pressure waves using Eqs. (6) , we consider the 

multiple-scaling scheme, where spatial and temporal variables take 

the form z n = εn z and t n = εn t, with n = 0 , 1 , 2 , 3 , ..., where ε
is a small parameter. Moreover, after assuming the viscosity coeffi- 

cients η1 and η2 to be of order ε2 , solutions u, v and p for (6) are 

expanded in the form 

u = 

∞ ∑ 

n =1 

εn u n (z 0 , z 1 , z 2 , . . . ; t 0 , t 1 , t 2 ; . . . ) , 

v = 

∞ ∑ 

n =1 

εn v n (z 0 , z 1 , z 2 , . . . ; t 0 , t 1 , t 2 ; . . . ) 

p = 

∞ ∑ 

n =1 

εn p n (z 0 , z 1 , z 2 , . . . ; t 0 , t 1 , t 2 ; . . . ) . (7) 
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