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a b s t r a c t 

The latent potentialities and applications of fractional calculus present a mathematical challenge to estab- 

lish its theoretical framework. One of these challenges is to have a compact and self-contained fractional 

power series representation that has a wider application scope and allows studying analytical proper- 

ties. In this letter, we introduce a new more general form of fractional power series expansion, based 

on the Caputo sense of fractional derivative, with corresponding convergence property. In order to show 

the functionality of the proposed expansion, we apply the corresponding iterative fractional power series 

scheme to solve several fractional (integro-)differential equations. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Recently, the “fractional derivative” has been utilized in several 

real-life models to describe the chaotic behavior of a certain phe- 

nomenon for a brief span subject to past conditions. Such exist- 

ing models are including, but not limited to, viscoelasticity [1–3] , 

quantum mechanics [4–6] , electromagnetism [7] , electrochemistry 

[8] , signal and image processing [9] , vibration and oscillation 

[10,11] , and biology [12,13] . As a result, it increasingly becomes 

important to construct a mathematical framework for this concept 

and to solve the associated differential equations. For more details 

and applications about fractional derivative, we refer the reader to 

[14–16] . 

Hitherto several fractional power series expansions have been 

presented in the literature [17–19] . However, all of them lack suffi- 

cient integer exponents for the variable under consideration and/or 

linear exponents in term of the fractional order derivative α > 0. 

Therefore, our motivation is to provide a more integrated represen- 

tation of fractional power series with a related convergence theo- 

rem. Consequently, in analogy to the classical power series method, 

we exploit this expansion to obtain closed-form solutions to vari- 

ous types of fractional (integro-)differential equations. 
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To the best knowledge of the authors, there is no unanimous 

definition for the term “fractional derivative” since all the proposed 

approaches do not preserve the classical integer-order derivative 

properties. However, in the Caputo sense, the derivative of a con- 

stant function is zero and the fractional differential equations need 

not have fractional order initial conditions. For these reasons, we 

adopt the Caputo fractional derivative approach in our work, which 

is defined for a function u ∈ C n (0 , ∞ ) by 

D 

α
x [ u (x )] = 

1 

�(n − α) 

∫ x 

0 

u 

(n ) ( τ ) 

( x − τ ) α+1 −n 
dτ (1.1) 

when n − 1 < α < n and by D 

α
x [ u (x )] = u (n ) (x ) when α = n ∈ N . 

It should be noted here that it suffices to consider the Ca- 

puto fractional derivative of order 0 < α ≤ 1 since D 

α
t [ u (t)] = 

D 

α−(n −1) 
t [ u (n −1) (t)] for arbitrary order n − 1 < α ≤ n, where α −

(n − 1) ∈ (0 , 1] . 

2. Self-contained fractional power series expansion 

In this section, we exhibit a coherent representation of frac- 

tional power series with a related convergence theorem. Unlike the 

well-known expansions, the exponents of the indeterminate con- 

sist of sufficient positive integers and linear description in term of 

the fractional derivative order α > 0. Throughout the rest of this 

section, we assume α ∈ (0, 1]. 
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Definition 2.1. A generalized fractional power series (GFPS) cen- 

tered at x 0 = 0 is an infinite series of the form 

∞ ∑ 

i + j=0 

c i j x 
iα+ j = c 00 ︸︷︷︸ 

i + j=0 

+ c 01 x 
1 + c 10 x 

α︸ ︷︷ ︸ 
i + j=1 

+ c 02 x 
2 + c 11 x 

α+1 + c 20 x 
2 α︸ ︷︷ ︸ 

i + j=2 

+ . . . 

(2.1) 

where i, j ∈ N 

∗, x ≥ 0 is a variable of indeterminate, and c ij ’s are the 

coefficients of the series. 

Conveniently, we here assumed that the center of GFPS (2.1) is 

zero since this can always be done via the linear change of variable 

(x − x 0 ) �→ x . 

We remark here that the GFPS expansion (2.1) generalizes all 

the well-known comparable expansions in the literature [17–19] in 

the sense that it includes more integer exponents and linear rep- 

resentations of α. In particular when α = 1 , we have the classical 

power series expansion 

∑ ∞ 

k =0 c k x 
k where c k = 

∑ 

i + j= k c i j . Moreover, 

the GFPS (2.1) is naturally obtained as a Cauchy product of two 

power series, after rearrangement, as following 

∞ ∑ 

i + j=0 

c i j x 
iα+ j = 

( 

∞ ∑ 

i =0 

a i x 
iα

) ( 

∞ ∑ 

j=0 

b j x 
j 

) 

(2.2) 

where c i j = a i b j . 

Remark 1. A direct implementation of the Caputo fractional 

derivative yields 

D 

α
x [ x 

β ] = 

⎧ ⎨ ⎩ 

�( β + 1 ) 

�( β − α + 1 ) 
x β−α, β > 0 

0 , β = 0 . 

(2.3) 

Thus, by term-by-term differentiation within the interval of con- 

vergence of x > 0, if u (x ) = 

∑ ∞ 

i + j=0 c i j x 
iα+ j , then 

D 

α
x [ u (x )] = 

∞ ∑ 

i + j=0 

�((i + 1) α + j + 1) 

�( iα + j + 1 ) 
c i +1 , j x 

iα+ j 

+ 

∞ ∑ 

j=1 

j! 

�( j + 1 − α) 
c 0 j x 

j−α, (2.4) 

and 

D 

2 α
x [ u (x )] = 

∞ ∑ 

i + j=0 

�((i + 2) α + j + 1) 

�( iα + j + 1 ) 
c i +2 , j x 

iα+ j 

+ 

∞ ∑ 

j=1 

�( α+ j+ 1 ) 

�( j+ 1 −α) 
c 1 j x 

j−α+ 

∞ ∑ 

j=1 

j! 

�( j+ 1 −2 α) 
c 0 j x 

j−2 α

(2.5) 

where D 

2 α = D 

αD 

α . And so on. 

Proposition 2.2. If 
∑ ∞ 

k =0 a k x 
kα converges for some x = a > 0 , then it 

converges absolutely for x ∈ (0, a ) . 

Proof. Fix ε = 1 . Then by the convergence of 
∑ ∞ 

k =0 a k a 
kα, there is 

N ∈ N such that | a k a 
k α | < 1 for all k ≥ N . Thus for k ≥ N and x ∈ (0, 

a ), we have | a k x kα| < ( x a ) 
αk which yields that 

∑ ∞ 

k =0 | a k x kα| is con- 

vergent by comparison test. �

Corollary 2.3. If 
∑ ∞ 

k =0 b k x 
k converges for some x = b > 0 , then it 

converges absolutely for x ∈ (0, b ) . 

The next theorem, which is an analog to Mertens’ Theorem, 

gives a necessary condition to guarantee the convergence of (2.1) . 

Theorem 2.4. Consider the two power series A = 

∑ ∞ 

k =0 a k x 
kα and 

B = 

∑ ∞ 

k =0 b k x 
k such that A converges absolutely to a for x = x a > 0 

and B converges to b for x = x b > 0 . Then the Cauchy product of A 

and B converges to ab for x = x c > 0 where x c = min { x a , x b } . 
Proof. Let C = 

∑ 

c k denotes the Cauchy product of A and B , and let 

A n , B n , and C n denote the partial sums of A, B , and C respectively. 

After rearrangement of terms, we have 

C n = 

n ∑ 

k =0 

c k 

= 

n ∑ 

k =0 

k ∑ 

i =0 

(a i x 
iα)(b k −i x 

k −i ) 

= 

n ∑ 

k =0 

(a k x 
kα) B n −k 

= b 

n ∑ 

k =0 

a k x 
kα + 

n ∑ 

k =0 

a k x 
kα(B n −k − b) 

= bA n + 

n ∑ 

k =0 

a k ̂
 B n −k x 

kα, (2.6) 

where ̂ B n −k = B n −k − b. Since bA n 
n →∞ −−−→ ab, then it suffices to 

show that 
∑ n 

k =0 a k ̂
 B n −k x 

kα n →∞ −−−→ 0 . To do so, let ε > 0. Then, since ̂ B n 
n →∞ −−−→ 0 , there exists M > 0 such that | ̂  B n | ≤ M for all n ∈ N , and 

there exists n 0 ∈ N such that | ̂  B k | < 

ε
2 a for all k ≥ n 0 . Therefore, for 

n ≥ n 0 we have ∣∣∣∣∣ n ∑ 

k =0 

a k ̂
 B n −k x 

kα

∣∣∣∣∣ ≤
n ∑ 

k =0 

∣∣a n −k ̂
 B k x 

(n −k ) α
∣∣

= 

n 0 ∑ 

k =0 

∣∣a n −k ̂
 B k x 

(n −k ) α
∣∣ + 

n ∑ 

k = n 0 +1 

∣∣a n −k ̂
 B k x 

(n −k ) α
∣∣

≤ M 

n 0 ∑ 

k =0 

∣∣a n −k x 
(n −k ) α

∣∣ + 

ε

2 a 

n ∑ 

k = n 0 +1 

∣∣a n −k x 
(n −k ) α

∣∣
< M 

n ∑ 

k = n −n 0 

∣∣a k x kα∣∣ + 

ε

2 

. (2.7) 

Now, by the absolutely convergence of A and the Cauchy 

criterion, there exits n 1 ∈ N such that for all n > m > n 1 we 

have 
∑ n 

k = m +1 | a k x kα| < 

ε
2 M 

. Thus, 
∑ n 

k = n −n 0 
| a k x kα| < 

ε
2 M 

for all n > 

n 0 + n 1 , and hence | ∑ n 
k =0 a k ̂

 B n −k x 
kα| < ε for all n ≥ n 0 + n 1 as 

desired. �

It should be noted here that we can argue analogously if we 

swap the convergence rules between A and B in the last theorem. 

3. A direct application of GFPS 

In this section, the proposed GFPS expansion (2.1) will be uti- 

lized to introduce a parallel scheme to the power series solution 

method to handle various types of fractional (integro-)differential 

equations. The first two examples are somewhat artificial to show 

that our proposed expansion is more comprehensive in the sense 

it can capture more integer and fractional exponents of the inde- 

terminate. Whereas the rest examples are well-known from liter- 

ature. It should be noted here that all the necessary calculations 

and graphical analysis are done by using Mathematica 10. 

Example 1. Consider the following fractional initial value problem: 

D 

α
x [ y (x )] − λy (x ) = 

x 2 −α

�(3 − α) 
, y (0) = y 0 , (3.1) 

where 0 < α ≤ 1 and x ≥ 0. In the light of the previous discussion 

and using the initial condition, the proposed generalized fractional 
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