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a b s t r a c t 

We applied MF-ADCCA to analyze the presence and asymmetry of the cross-correlations between the 

major currency rates and Bitcoin, and the Dow Jones Industrial Average (DJIA), gold price and the oil 

crude market. We find that multifractality exists in every cross-correlation studied, and there is asym- 

metry in the cross-correlation exponents under different trend of the WTI, Gold and DJIA. Bitcoin shows 

a greater multifractal spectra than the other currencies on its cross-correlation with the WTI, the Gold 

and the DJIA. Bitcoin shows a clearly different relationship with commodities and stock market indices 

which has to be taken into consideration when investing. This has to do with the years this currency has 

been traded, the characteristics of cryptocurrencies and its gradual adoption by financial organizations, 

governments and the general public. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

Cryptocurrency is quickly becoming an important aspect of the 

global financial market. At the time of this writing, Cyrptocur- 

rency Market Capitalization lists the total market capitalization of 

all cryptocurrency at approximately $144 billion dollars of which 

Bitcoin accounts for almost half of all the valuation. Bitcoin is cur- 

rently trading at approximately $4,100 per coin and has a total 

capitalization of approximately $68 billion USD; a valuation which 

just five years ago would have been unthinkable. Major financial 

organizations are taking large positions in cryptocurrencies, retail- 

ers are taking coin for payment, and people are sending money 

abroad. In a 2016 piece, Harwick [1] finds that Bitcoin possesses 

some attributes that may make it a good complement to curren- 

cies of emerging markets. Some of the promise of cryptocurrency 

comes from the potential to reduce transaction costs, the security 

in the transaction, and potential reduction in exchange rate risk [2] . 

However, at present there has been little attention paid to how 

cryptocurrency behaves. 

Given the rising use of the cryptocurrencies, we propose to per- 

form an analysis of the behavior of the value Bitcoin applying 

fractal theory and comparing it with the behavior of some ma- 
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jor global currencies including the Euro, the Great Britain Pound, 

and the Japanese Yen. In particular, we propose to evaluate the 

behavior with respect to the presence and asymmetry of cross- 

correlations between these currencies and three major financial as- 

sets: gold, crude oil and the DJIA index. 

The current study is motivated by the rise of the interest and 

potential of cryptocurrency in general and Bitcoin in particular. An- 

alyzing the behavior of Bitcoin with respect to crude oil, gold and 

the DJIA can be contrasted if its behavior is similar to other cur- 

rencies. If the results show that there is similarity with respect 

to other currencies then one may conclude that Bitcoin behaves 

like any other currency. However, if the results show differences 

then we might concluded that this an anomaly of the currency or 

that Bitcoin, and cryptocurrency by extension, does not behave as 

a currency and may be that its behavior is more similar to an- 

other financial asset. In fact, under the Internal Revenue Service 

(IRS) guidance, crytpocurrency is treated as property for U.S. Fed- 

eral tax purposes (Notice 2014-21, 2014-16, IRBXXX). Even if the 

results are dissimilar one could conclude that we are facing a fi- 

nancial bubble or irrational exuberance. 

Recent movements in the exchange rate between Bitcoin and 

the U.S. Dollar highlight the importance of understanding the be- 

havior of the asset. On December 17, 2017 the exchange rate be- 

tween Bitcoin and the USD broke the $20,0 0 0 mark and in the 

same day closed at just above $19,0 0 0. In the month and a half 

since the all-time high, the rate has dropped back down to a low 
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closing price of $7,100. The movement suggests that cryptocurren- 

cies remain a speculators market and perhaps we have just wit- 

nessed the largest bubble in Bitcoin to date. Hence, the need to 

develop a better understanding of this instrument. 

Assuming that cryptocurrency in general, and Bitcoin in partic- 

ular, one needs to apply a model that captures the potential non- 

linearity of the instrument. Traditional techniques such as Ordi- 

nary Least Squares is limited in its ability to capture complex re- 

lationships between data. Cheung et al. [3] applied an augmented 

Dickey–Fuller test and found the presence of a number of short- 

lived bubbles and three large bubbles in their analysis of Bitcoin. 

Their approach was selected to test for explosive behavior in a 

given time series. Hence, a different approach that has the poten- 

tial to capture the complexity and is more robust is sought. To this 

end, we propose to apply fractal analysis to the time series. 

One of the most widely used tests to determine the fractal di- 

mension of a given time series is the Rescaled Range Analysis (R/S), 

introduced by Hurst [4,5] . One of the main benefits of the R/S 

analysis is that it is robust in that its behavior is related only by 

the long-term persistence dependence being able to detect non- 

periodic cycles even if they have a length greater than the analyzed 

sample period. Additionally, R/S is able to detect long-term corre- 

lations in random processes. Mandelbrot and Wallis [6] using R/S 

found that many natural phenomena are not independent random 

processes; and, giving an interpretation to the exponent of Hurst H 

there is significant long-term correlation. 

One could use other approaches; however, there are limitations 

to others that fractal analysis overcomes. For instance, some limita- 

tions of traditional models, such as Fourier transform and spectral 

analysis, fail to qualify scaling behaviors. Peng et al. [7] developed 

the Fluctuation Analysis (FA) method and then the Detrended Fluc- 

tuation Analysis (DFA) method [8] . Because the mono-fractal scal- 

ing behavior cannot fully describe the uneven multi-fractal charac- 

teristics of the time series and signals, it is necessary to develop 

the Multi-Fractal Detrended Fluctuation Analysis (MF-DFA) [9,10] . 

The MF-DFA method has been applied in many fields [11–17] . Par- 

ticularly in the field of finance MF-DFA has been applied to ana- 

lyze stock market [18–28] , exchange rates [29–39] , interest rates 

[40] , market efficiency [41–46] , risk market valuation [47,48] , fi- 

nancial crisis [49,50] , investment strategies [51] , gold market [52–

55] , crude oil market [56–59] , and the future market [60–62] . 

Since the behavior of financial assets may contain components 

of trends and asymmetry in the reaction to different impacts 

Alvarez-Ramirez et al. [63] introduced the asymmetric DFA (A-DFA) 

to analyze asymmetric correlations in the scaling behavior of the 

time series. Cao et al. [64] further extended the DFA (A-DFA) with 

the proposition of the asymmetric multi-fractal detrended fluctua- 

tion analysis (A-MFDFA). Further, Zhang et al. [65] introduced the 

asymmetric multi-fractal detrending moving average analysis (A- 

MFDMA). Recently, Lee et al. [66] used A-MFDMA to analyze U.S. 

stock market indexes while Gajardo and Kristjanpoller [67] applied 

the cross-correlation version of the A-MFDFA, the A-MFDCCA, to 

study the Latin American stock markets and their relationship with 

the oil market. 

Analyzing the behavior of Bitcoin with respect to crude oil, gold 

and DJIA, one can be contrasted if its behavior to determine its 

similarity to the major currencies. If the results show that there 

is similarity with the other currencies a conclusion could be that 

Bitcoin behaves like any other currency; but, if the results show 

differences it can be concluded that this is an anomaly of a cur- 

rency or that Bitcoin does not behave as a currency and may be 

that its behavior is more similar to another financial asset. Even if 

the results are dissimilar one might conclude that we are facing a 

financial bubble or irrational exuberance. This is the first study of 

Bitcoin’s multifractal properties. The comparison of the multifac- 

tral and asymmetric behavior of the currencies is carried out with 

respect to three major financial assets, the price of gold, the price 

of crude oil and the DJIA stock index. 

The remainder of this paper is organized as follows. 

Section 2 describes the method used, Section 3 describes the 

data used in the analysis. Section 4 provides the results obtained. 

In the final section of the manuscript, we present our conclusions 

and recommendations. 

2. Multifractal asymmetric detrended cross-Correlation analysis 

method 

Two time series x i and y i , i = 1 , . . . , N, N is the length of the 

series. The following steps summarizes the approach [67] . 

First: Construct the profile 

X (i ) = 

i ∑ 

t=1 

(x t − x̄ ) , Y (i ) = 

i ∑ 

t=1 

(y t − ȳ ) , i = 1 , . . . , N (1) 

Where x̄ and ȳ represent the average of the series in the whole 

period. Second: X ( i ) and Y ( i ) are separated into N s ≡ [ N / s ] non- 

overlapping windows of equal length s . Since the length of the se- 

ries N is not necessarily a multiple of the time scale s , some part 

of the profile can remain at the end. In order to not discard this 

part, the same procedure is applied starting from the end of the 

series. This means that we obtain 2 N s segments. Third: The trends, 

X 

v ( i ) and Y v ( i ) for each one of the 2 N s segments are estimated with 

a linear regression as: X v (i ) = a X v + b X v · i and Y v (i ) = a Y v + b Y v · i . 

This precedes the determination of the detrended covariance, cal- 

culated as follows 

F (v , s ) = 

1 

s 

s ∑ 

i =1 

| X [(v − 1) s + i ] − X 

v (i ) | · | Y [(v − 1) s + i ] − Y v (i ) | 

(2) 

for each segment v , v = 1 , . . . , N s and 

F (v , s ) = 

1 

s 

s ∑ 

i =1 

| X [ N − (v − N s ) s + i ] − X 

v (i ) | 

· | Y [ N − (v − N s ) s + i ] − Y v (i ) | (3) 

for each segment v , v = N s + 1 , . . . , 2 N s . 

Fourth: The q th order of the fluctuation function is obtained as 

follows for the different behavior of the trends in time series x t 

F + q (s ) = 

( 

1 

M 

+ 

2 N s ∑ 

v =1 

sign (b X v ) + 1 

2 

[ F (v , s )] q/ 2 

) 1 /q 

(4) 

F −q (s ) = 

( 

1 

M 

−

2 N s ∑ 

v =1 

−[ sign (b X v ) − 1] 

2 

[ F (v , s )] q/ 2 

) 1 /q 

(5) 

when q � = 0, and 

F + 0 (s ) = exp 

( 

1 

2 M 

+ 

2 N s ∑ 

v =1 

sign (b X v ) + 1 

2 

[ F (v , s )] q/ 2 

) 1 /q 

(6) 

F −0 (s ) = exp 

( 

1 

2 M 

−

2 N s ∑ 

v =1 

−[ sign (b X v ) − 1] 

2 

[ F (v , s )] q/ 2 

) 1 /q 

(7) 

for q = 0 . M 

+ = 

∑ 2 N s 
v =1 

sign (b X v )+1 

2 and M 

− = 

∑ 2 N s 
v =1 

−[ sign (b X v ) −1] 

2 are 

the number of subtime series with positive and negative trends. 

We assume b X v � = 0 for all v = 1 , . . . , 2 N s , such that M 

+ + M 

− = 

2 N s . 
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