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a b s t r a c t 

We derived explicit forms for the convergence to the steady state for a 1-D Smith–Slatkin mapping at and 

near at bifurcations. We used a phenomenological description with a set of scaling hypothesis leading to 

a homogeneous function giving a scaling law. The procedure is supported by numerical simulations and 

confirmed by a theoretical description. At the bifurcation we used an approximation transforming the dif- 

ference equation into a differential one whose solution remount all scaling features. Near the bifurcation 

an investigation of fixed point stability leads to the decay for the stationary state. Simulations are made 

in the pitchfork, transcritical and period doubling bifurcations. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The pioneer application of nonlinear mapping for the investiga- 

tion of population dynamics in biology is due to May [1] . After his 

publication many different contributions appeared. Applications of 

mappings are vast and can be seen in physics [2–6] , chemistry, bi- 

ology, engineering, mathematics and many others [7–17] . 

The investigation of stability of fixed points as well as con- 

ditions leading to bifurcations are well known [18–21] . Intermit- 

tence was investigated in Ref. [22] and led to interesting properties 

where a pseudo regularity along a chaotic dynamics is anticipat- 

ing a tangent bifurcation giving birth to a periodic window, hence 

to regularity. It is known that the convergence to the fixed point 

at the bifurcation was proved to obey an homogeneous function 

characterized by a set of three critical exponents [23,24] . Near the 

bifurcations the dynamics converges to the steady state by means 

of an exponential decay [23] whose relaxation time is given by 

a power law for a bifurcation parameter. The set of critical expo- 

nents dictates the speed of convergence to the stationary point and 

can also be used to identify, whenever it is not possible analyti- 

cally what type the bifurcation is. In this paper, we consider the 

Smith–Slatkin mapping, derived from applications in biology, and 

seek to obtain, understand and describe the critical exponents near 

the bifurcations. We implement different procedures to describe 

the dynamics and hence obtain the exponents. First we identify 
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where the bifurcations are. Then we investigate the convergence 

to the fixed point using numerical simulations. We consider and 

approximation that transforms the difference equation, near the 

fixed point, into a differential equation, and solve it analytically to 

compare the arguments with the corresponding scaling times. The 

critical exponents emerge naturally from such a procedure and are 

obtained for short and large times. Near the bifurcation we obtain 

the relaxation time to the steady state by using fixed point stabil- 

ity analysis. At the bifurcation the convergence is described by an 

homogeneous function while near the bifurcations an exponential 

decay explains how the steady state is reached. 

The organization of the paper is simple. Section 2 describes the 

mapping, the numerical simulations as well as the analytical find- 

ings. Conclusions are shown in Section 3 . 

2. The model and scaling properties 

The model we consider in this paper is a version of the Smith–

Slatkin mapping, which is written as [25–28] 

x n +1 = f (x n ) = 

Rx n 

1 + a x 
γ
n 

, (1) 

where R, a and γ are control parameters and we consider them to 

be non negative. The dynamical variable is represented by x when 

the index n denotes the iteration number. For the case of γ = 1 the 

Skellam model [28,29] is recovered. To give a glimpse of the orbit 

diagram, Fig. 1 was constructed for the parameters γ = 6 , a = 1 for 

the initial condition x 0 = 0 . 01 . 
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Fig. 1. Orbit diagram obtained for Eq. (1) using γ = 6 , a = 1 and the initial con- 

dition x 0 = 0 . 01 . Fixed point x ∗2 is represented in red (stable) and green (unstable). 

Bifurcations as well as the main periodic window are identified in the diagram. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

The fixed points, obtained from the condition x n +1 = x n = x ∗

are: (i) x ∗
1 

= 0 , which is asymptotically stable for R ∈ [0, 1), (ii) and 

(iii) deserve a short discussion first. For any odd γ , fixed points 

are: (ii) x ∗
2 , 3 

= ±
[

R −1 
a 

] 1 
γ while γ is of any other kind, even, irra- 

tional etc, we obtain (iii) x ∗2 = 

[
R −1 

a 

] 1 
γ . Fixed points x ∗2 , 3 are asymp- 

totically stable 1 for R ∈ (1 , 
γ

(γ −2) 
) , for γ � = 2. A pitchfork supercrit- 

ical bifurcation happens at R = 1 for an odd γ while a transcriti- 

cal is observed at same R for any other value of γ . Red curve in 

Fig. 1 shows the stable fixed point x ∗
2 

while green curve is a con- 

tinuation of x ∗
2 

however after a period doubling bifurcation where 

it is unstable. A period two orbit arises at R = 

γ
(γ −2) 

following nor- 

mal Feigenbaum scaling [30,31] after that. 

Our first objective in this paper is to consider the convergence 

to the fixed point x ∗
1 

= 0 at the bifurcation in R = 1 . We shall show 

it obeys scaling properties leading different curves generated by 

different initial conditions to overlap onto each other, after ap- 

propriate scaling transformations, into a single and universal plot. 

Near the bifurcation, the convergence is so far described by an ex- 

ponential decay whose relaxation time depend on the distance of 

the bifurcation. We use Taylor expansion near the fixed point, in- 

vestigating the fixed point stability to prove it. 

To illustrate how the dynamical variable evolves to the equilib- 

rium at a bifurcation, we considered R = 1 , γ = 6 , a = 1 and differ- 

ent initial conditions for x 0 . Fig. 2 (a) shows the convergence to the 

fixed point x ∗
1 

= 0 . We see that for short n , the orbit stays confined 

in a regime of seemingly constant plateau. After a while eventually 

it suffers a changeover at a typical crossover iteration number de- 

noted as n x and ultimately bends towards a regime of decay to its 

final state x ∗. 

The scaling properties extracted from Fig. 2 (a) are the follow- 

ing: (i) For a short n � n x we notice x (n ) ∝ x α
0 
, leading us to con- 

1 By asymptotically stable we mean that given an initial condition inside of the 

basin of attraction of the fixed point, in the limit of lim n → ∞ , the orbit has a final 

state at x ∗ , hence converging to the fixed point. 

clude that α = 1 since x ( n ) ∝ x 0 ; (ii) For large enough n , typically 

n 	 n x , the dynamical variable is described as x ( n ) ∝ n β where β is 

a decay exponent which depends on the nonlinearity of the map- 

ping γ . For γ = 6 we obtained from fitting numerically the data an 

exponent β = −0 . 16 6 6 6320(8) , as shown in the decaying regime 

of Fig. 2 ; (iii) Finally, the crossover iteration number n x is given by 

n x ∝ x z 
0 

where z is a changeover exponent. 

A homogeneous function of the type 

x (x 0 , n ) = l x (l ˜ a x 0 , l 
˜ b n ) , (2) 

is a natural consequence of the behavior observed from Fig. 2 (a) 

as well as from the scaling hypotheses. Here l is a scaling factor, 

˜ a and 

˜ b are characteristic exponents. Doing a similar procedure as 

made in Ref. [23] a scaling law appears as 

z = 

α

β
. (3) 

The knowledge of any two exponents allows one to find the third 

by using Eq. (3) . The relevant scaling transformations to be made 

are x → x/x α
0 

and n → n/x z 
0 
, leading to a perfect overlap of all 

curves shown in Fig. 2 (a) onto a single and hence universal curve, 

as shown in Fig. 2 (b). 

When the dynamical variable x ( n ) is very close to the equi- 

librium, the expression x n +1 = Rx n (1 + ax 
γ
n ) 

−1 can be Taylor ex- 

panded leading to x n +1 = Rx n (1 − ax 
γ
n ) . Moreover its variation as 

compared to the next iterate to be very small, i. e., x n +1 − x n is 

small enough. Such property allows us to use the following ap- 

proximation x n +1 − x n ∼= 

df 
dn 

. For R = 1 , this leads to df 
dn 

= −ax γ +1 . 

This is a first order differential equations that must be solved for 

the ranges x ∈ [ x 0 , x ( n )] and n starting from n = 0 . The solution is 

written as 

x (n ) = 

x 0 

[1 + aγ x 
γ
0 

n ] 
1 
γ

. (4) 

Eq. (4) allows us to do the following analysis: (i) when aγ x 
γ
0 

n � 1 , 

we have x ( n ) ∼= 

x 0 , therefore leading to α = 1 ; (ii) For the case of 

aγ x 
γ
0 

n 	 1 we end up with x (n ) ≈ n −1 /γ , hence β = −1 /γ ; (iii) 

for the case aγ x 
γ
0 

n x = 1 we have n x ∝ x 
−γ
0 

, therefore z = −γ . All 

of these findings are giving support for the numerical simulations. 

Eq. (4) is plotted in Fig. 2 (a) as dashed lines and we see the agree- 

ment between the numerical an analytical description is remark- 

able. 

Near the bifurcation the dynamics is not described anymore 

by an homogeneous function. Instead of it the convergence is 

described rather by an exponential decay of the type (see Refs. 

[32,33] ) 

x (n ) − x ∗ = (x 0 − x ∗) e −n/τ , (5) 

where τ is the relaxation time described by 

τ ∝ μδ, (6) 

and δ is a relaxation exponent. Fig. 3 shows the behavior of τ vs . μ
given an exponent δ = −0 . 9879(4) ∼= 

−1 , obtained by a numerical 

fitting of the data, and this result is invariant with respect to the 

parameter γ . 

Let us now describe the convergence to the steady state when 

R � = 1, therefore near the bifurcation. There is no difference on the 

procedure considering before or after the bifurcation. We shall 

consider the neighborhood of R = R c = 1 , where the index c de- 

notes the critical, i.e., the bifurcation parameter. Starting from an 

initial condition near the fixed point we have x 0 = x ∗ + ε0 , where 

x ∗ denotes the fixed point and ε0 corresponds to an initial distance 

from the fixed point. Since the mapping is given by x n +1 = f (x n ) , 

we have that x 1 = f (x ∗ + ε0 ) . Since ε0 is sufficiently small, a Taylor 
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