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We discuss the dynamic of a stochastic hepatitis B epidemic model. A stochastic hepatitis B model is
formulated with a varying population environment for a long term behavior. The proposed model consists
of three classes, namely the susceptible individuals in which the transmission rate is distributed by white
noise, the infected individuals in which the same perturbation occurs and the recovered individuals. We
derive sufficient conditions for the extinction and the persistence. Finally, we carry out the numerical
simulations to support our analytical results.
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1. Introduction

In the real world problem biological phenomenon are always
affected by the environmental noise. The environmental variations
have a critical influence on the development of an epidemic [1,2].
For human disease, the nature of epidemic growth and spread is
inherently random due to the unpredictability of person-to-person
contacts and population is subject to a continuous spectrum of dis-
turbances [3,4]. So the variability and randomness of the environ-
ment is fed through to the state of the epidemic. The contagious
disease of hepatitis B causes inflammation of liver results from
hepatitis B virus infection is one of the best example in which the
epidemics growth and spread are random due to the unpredictabil-
ity of person-to-person contacts [5].

Mathematical modeling is a powerful tool to describe the dy-
namical behavior of various diseases in the real world. A number
of mathematicians and ecologists have developed diverse epidemic
models to realize and control the spread of transmissible diseases
in the community. In the past two decades the field of mathemat-
ical modeling has been widely used to study the transmission of
variety of infectious diseases (see e.g., [6-11]). There are two types
of epidemic models viz the deterministic epidemic model and the
stochastic epidemic model. Mathematical modeling of a biological
phenomena the stochastic differential equation models are more
suitable than the deterministic one [12], because it can provide an
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additional degree of realism in comparison to their deterministic
counterparts. Stochastic models produce more valuable output as
compared to the deterministic ones because running a stochastic
model several times, we can build up a distribution of the pre-
dicted outcomes, e.g., the number of infected classes at time t.
On the other hand, a deterministic model will just give a single
predicted value [13-17]. Many deterministic epidemic models have
been developed for the description of viral dynamic of hepatitis B,
(see for detail [18-23]).

In this paper, we propose a stochastic epidemic model for the
transmission dynamics of hepatitis B virus with a varying popula-
tion environment for a long term behavior. We categorize the total
population into three different classes. The first class is the sus-
ceptible individuals in which the transmission rate is distributed
by white noise. The second class includes the infected individuals
in which the same perturbation occurs. The third class consists of
the recovered individuals. We discuss the disease extinction, the
disease persistence and derive sufficient conditions for them. We
perform numerical simulation using the stochastic Runge-Kutta
method to support our analytical results.

2. Background and the model formulation

In this section, we present the stochastic hepatitis B epidemic:
Susceptible-infected-recovered model with varying population en-
vironment in the long term behavior. We impose the following as-
sumptions on the model:

(A1). The total population N(t) at time ¢ is subdivided into three
different compartments: The susceptible individuals S(t), the hep-
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atitis B infected individuals I(t) and the recovered individuals R(t),
i.e, N(t) = S(t) +I(t) + R(t), varies with time t [24].

(A;). All parameters and state variables of the proposed model
are non-negative.

(A3). The hepatitis B vaccine provides indefinite protection. Thus
the susceptible population goes to the recovered population after
getting successful vaccination.

(Ag). For the effect of randomly fluctuating environment, that
fluctuations in the environment will manifest themselves mainly
as fluctuations in the hepatitis B transmission parameter S, i.e.,
B — B +nB(t), where B(t) is standard Brownian motion with the
property B(0) = 0 and with the intensity of white noise 72> 0.

The assumptions (A;)-(A4) lead to the following stochastic epi-
demic model is consisting of three differential equations:

ds(t) = (A — BSOI(E) — (o +v)S(8))dt — nS()I(¢)dB(t),
di(t) = (BSOIE) = (1o + 1 + y)I(®))dt + nSOI(t)dB(t),
dR(t) = (nI(t) +S(t) - oR())dt. (1

In the above model (1), A represents the per capita constant birth
rate. ug and pq respectively represent the natural death rate and
the disease induced death rate. The vaccination rate is denoted by
v, while y; represents the constant recovery rate for hepatitis B
infected individuals.

3. Existence and uniqueness

In this section, we discuss solution of the stochastic hepatitis B
model (1).

Theorem 1. For an initial value (S(0),1(0),R(0)) € R3, the solu-
tion (S(t), I(t), R(t)) of the proposed stochastic hepatitis B epidemic
model (1) is unique, for t>0. Moreover, the solution remains in Ri
with probability 1, i.e., (S(t),I(t),R(t)) € R3+ for all t>0 a.s (almost
surely).

Proof. It is clear that the coefficients of the equations of the model
are locally lipschitz continuous for any given initial size of popu-
lation (S(0),1(0),R(0)) € Ri. It follows that there is a unique lo-
cal solution (S(t), I(t), R(t)) on t<[0, t¢), where . is the explosion
time (for detail see the reference [12,19]). To show that this solu-
tion is global, we prove that 7. = co a.s. Let kg >0 be sufficiently
large, so that S(0), I(0) and R(0) all lie within the interval [klo, kol.
For each integer k >k, define the stopping time

T = {t € [0, T) : min{S(t). I(t), R(t)}

% or max{S(t),I(t),R(t)}}. (2)
In this paper, we set inf¢ = oo, where ¢ denotes the empty
set. According to the definition, 7, increases as k— oco. Set T =
limy_, ., with 7o <7, as. If we can show that 7, = oo a.s., then
Te = oo and (S(t),I(t), R(t)) e R2 as. for all t> 0. In other words to
complete the proof, we need to show that 7. = oo a.s. If this state-
ment is false, then there exists a pair of constants T> 0 and € (0,
1), such that

P{t, <T} > €. 3)

IA

Hence there is an integer k; > kg, such that
P{t, <T} > ¢, for all k > k.

Let N(t) =S(t) +1(t) + R(t), then for t <7}, one may observe that

dN(t) = (A — p1oN() — pal(D))dt < (A — puoN(D))dt. (4)

Solving Eq. (4), we arrive at

A : A

N(t) < {W VO < ‘= M. (5)
N(0), if N(0) > 2,

Now, we define a C?>-function H : R2 — Ry, such that

H(S,I,R) =S+1+R—3 - (logS + logl + logR). (6)

Clearly the function H is non-negative, which can be seen from

y—1-—logy >0, for all y>0. Let k>kg and T> 0 be arbitrary. The
application of It6 formula to Eq. (6) yields

dH(S,I.R) = (1 _ %)ds+ 1 sy

252
+ (1 - })du %(dl)z + (1 - %)
— LH(S, L RYdt + (I - S)dB(t). )

In Eq. (7), LH : Ri — R, is defined by the following equation

LH(S.I.R) = (1 _ %) (A ~ BSOI() — (1o + v)S(t)) + %nzzz

1

(1= 1) (BSOIO = (2o + -+ 7)1 )+ 5778°

1
+ (1= ) (n1+150) - noR©)) ).
A 1 5,
= A= (o +V)S— <+ Bl+ (o + V) + 5071
1
—(po+p +yDI = S+ (o + 1 + 1) + 57°S*
I S
+nl+VS = poR =15 — V5 + Ho.

1
< A+ Bl po+ v+ 517 + ) + po+ pa + 1
+ ¥l + VS + Ko,
< A+30o+V+ M2 + (B +y1 + VM + o + i
+ 91+ po =K. (8)
Consequently

E[H(S(tk AT). (e AT), R(Ty A T))]

< H(S(0). 1(0). R(0)) +E[/OW Kdt],

< H(5(0), 1(0), R(0)) + KT. (9)

Setting Q = 7, < T for k>ky. As a result, Eq. (3) reads P(€2;)>e€.
Note that for every w € y, there exists at least one S(ty, ), I(ty,
), R(ty, w) that equal k or ,1< and hence H(S(ty), I(ty), R(ty)) is
not less than k — 1 — logk or % — 1+ logk. Thus we have

1
H(S(50. 17 R(w)) = E(k— 1~ logk) A 3
It then follows from Eqs. (3) and (9), that

H(S(0).1(0), R(0)) +KT = E[ 1o H(S(r). (5 R(z)) |

1+ logk). (10)

> 6[(/( —1 —1logk) A (Il? -1+ logk)],
(11)
where 1, is the indicator function of €2. Letting k— oo leads

to the contradiction co > H(S(O), 1(0), R(O)) + MT = oo, which im-
plies that 7, = oo as. O

Remark 1. It is clear from Theorem 1 that for any initial
value (5(0),1(0),R(0)) €R3+~ there is a unique global solution
(S(), 1(t), R(t)) € R3. almost surely of the model (1). Hence

dN(t) < (A = poN(D)). (12)
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