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a b s t r a c t 

We discuss the dynamic of a stochastic hepatitis B epidemic model. A stochastic hepatitis B model is 

formulated with a varying population environment for a long term behavior. The proposed model consists 

of three classes, namely the susceptible individuals in which the transmission rate is distributed by white 

noise, the infected individuals in which the same perturbation occurs and the recovered individuals. We 

derive sufficient conditions for the extinction and the persistence. Finally, we carry out the numerical 

simulations to support our analytical results. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the real world problem biological phenomenon are always 

affected by the environmental noise. The environmental variations 

have a critical influence on the development of an epidemic [1,2] . 

For human disease, the nature of epidemic growth and spread is 

inherently random due to the unpredictability of person-to-person 

contacts and population is subject to a continuous spectrum of dis- 

turbances [3,4] . So the variability and randomness of the environ- 

ment is fed through to the state of the epidemic. The contagious 

disease of hepatitis B causes inflammation of liver results from 

hepatitis B virus infection is one of the best example in which the 

epidemics growth and spread are random due to the unpredictabil- 

ity of person-to-person contacts [5] . 

Mathematical modeling is a powerful tool to describe the dy- 

namical behavior of various diseases in the real world. A number 

of mathematicians and ecologists have developed diverse epidemic 

models to realize and control the spread of transmissible diseases 

in the community. In the past two decades the field of mathemat- 

ical modeling has been widely used to study the transmission of 

variety of infectious diseases (see e.g., [6–11] ). There are two types 

of epidemic models viz the deterministic epidemic model and the 

stochastic epidemic model. Mathematical modeling of a biological 

phenomena the stochastic differential equation models are more 

suitable than the deterministic one [12] , because it can provide an 
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additional degree of realism in comparison to their deterministic 

counterparts. Stochastic models produce more valuable output as 

compared to the deterministic ones because running a stochastic 

model several times, we can build up a distribution of the pre- 

dicted outcomes, e.g., the number of infected classes at time t . 

On the other hand, a deterministic model will just give a single 

predicted value [13–17] . Many deterministic epidemic models have 

been developed for the description of viral dynamic of hepatitis B, 

(see for detail [18–23] ). 

In this paper, we propose a stochastic epidemic model for the 

transmission dynamics of hepatitis B virus with a varying popula- 

tion environment for a long term behavior. We categorize the total 

population into three different classes. The first class is the sus- 

ceptible individuals in which the transmission rate is distributed 

by white noise. The second class includes the infected individuals 

in which the same perturbation occurs. The third class consists of 

the recovered individuals. We discuss the disease extinction, the 

disease persistence and derive sufficient conditions for them. We 

perform numerical simulation using the stochastic Runge–Kutta 

method to support our analytical results. 

2. Background and the model formulation 

In this section, we present the stochastic hepatitis B epidemic: 

Susceptible-infected-recovered model with varying population en- 

vironment in the long term behavior. We impose the following as- 

sumptions on the model: 

( A 1 ). The total population N ( t ) at time t is subdivided into three 

different com partments: The susceptible individuals S ( t ), the hep- 
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atitis B infected individuals I ( t ) and the recovered individuals R ( t ), 

i.e., N(t) = S(t) + I(t) + R (t) , varies with time t [24] . 

( A 2 ). All parameters and state variables of the proposed model 

are non-negative. 

( A 3 ). The hepatitis B vaccine provides indefinite protection. Thus 

the susceptible population goes to the recovered population after 

getting successful vaccination. 

( A 4 ). For the effect of randomly fluctuating environment, that 

fluctuations in the environment will manifest themselves mainly 

as fluctuations in the hepatitis B transmission parameter β , i.e., 

β → β + η ˙ B (t) , where B ( t ) is standard Brownian motion with the 

property B (0) = 0 and with the intensity of white noise η2 > 0. 

The assumptions ( A 1 )–( A 4 ) lead to the following stochastic epi- 

demic model is consisting of three differential equations: 

dS(t) = 

(
� − βS(t) I(t) − (μ0 + v ) S(t) 

)
dt − ηS(t ) I(t ) dB (t ) , 

dI(t) = 

(
βS(t) I(t) − (μ0 + μ1 + γ1 ) I(t) 

)
dt + ηS(t ) I(t ) dB (t ) , 

dR (t) = 

(
γ1 I(t) + v S(t) − μ0 R (t ) 

)
dt . (1) 

In the above model (1) , � represents the per capita constant birth 

rate. μ0 and μ1 respectively represent the natural death rate and 

the disease induced death rate. The vaccination rate is denoted by 

v , while γ 1 represents the constant recovery rate for hepatitis B 

infected individuals. 

3. Existence and uniqueness 

In this section, we discuss solution of the stochastic hepatitis B 

model (1) . 

Theorem 1. For an initial value (S(0) , I(0) , R (0)) ∈ R 3 + , the solu- 

tion ( S ( t ), I ( t ), R ( t )) of the proposed stochastic hepatitis B epidemic 

model (1) is unique, for t ≥ 0 . Moreover, the solution remains in R 3 + 
with probability 1, i.e., (S(t) , I(t) , R (t)) ∈ R 3 + for all t ≥ 0 a.s (almost 

surely). 

Proof. It is clear that the coefficients of the equations of the model 

are locally lipschitz continuous for any given initial size of popu- 

lation (S(0) , I(0) , R (0)) ∈ R 3 + . It follows that there is a unique lo- 

cal solution ( S ( t ), I ( t ), R ( t )) on t ∈ [0, τ e ), where τ e is the explosion 

time (for detail see the reference [12,19] ). To show that this solu- 

tion is global, we prove that τe = ∞ a.s. Let k 0 ≥ 0 be sufficiently 

large, so that S (0), I (0) and R (0) all lie within the interval [ 1 
k 0 

, k 0 ] . 

For each integer k ≥ k 0 , define the stopping time 

τk = { t ∈ [0 , τe ) : min { S(t) , I(t) , R (t) } 
≤ 1 

k 
or max { S(t) , I(t) , R (t) } 

} 

. (2) 

In this paper, we set in fφ = ∞ , where φ denotes the empty 

set. According to the definition, τ k increases as k → ∞ . Set τ∞ 

= 

lim k →∞ 

with τ∞ 

≤ τ e a.s. If we can show that τ∞ 

= ∞ a.s., then 

τe = ∞ and (S(t) , I(t) , R (t)) ∈ R 3 + a.s. for all t ≥ 0. In other words to 

complete the proof, we need to show that τe = ∞ a.s. If this state- 

ment is false, then there exists a pair of constants T > 0 and ε ∈ (0, 

1), such that 

P { τ∞ 

≤ T } > ε. (3) 

Hence there is an integer k 1 ≥ k 0 , such that 

P { τk ≤ T } ≥ ε, for all k ≥ k 1 . 

Let N(t) = S(t) + I(t) + R (t) , then for t ≤ τ k , one may observe that 

dN(t) = 

(
� − μ0 N(t) − μ1 I(t) 

)
dt ≤

(
� − μ0 N(t ) 

)
dt . (4) 

Solving Eq. (4) , we arrive at 

N(t) ≤
{ 

�
μ0 

, if N(0) ≤ �
μ0 

, 

N(0) , if N(0) > 

�
μ0 

, 
:= M. (5) 

Now, we define a C 2 -function H : R 3 + → R + , such that 

H(S, I, R ) = S + I + R − 3 − ( log S + log I + log R ) . (6) 

Clearly the function H is non-negative, which can be seen from 

y − 1 − logy ≥ 0 , for all y > 0. Let k ≥ k 0 and T > 0 be arbitrary. The 

application of It ̂  o formula to Eq. (6) yields 

dH(S, I, R ) = 

(
1 − 1 

S 

)
d S + 

1 

2 S 2 
(d S) 2 

+ 

(
1 − 1 

I 

)
d I + 

1 

2 I 2 
(d I) 2 + 

(
1 − 1 

R 

)
, 

= LH(S, I, R ) dt + η(I − S) dB (t) . (7) 

In Eq. (7) , LH : R 3 + → R + is defined by the following equation 

LH(S, I, R ) = 

(
1 − 1 

S 

)(
� − βS(t) I(t) − (μ0 + v ) S(t) 

)
+ 

1 

2 

η2 I 2 

+ 

(
1 − 1 

I 

)(
βS(t) I(t) − (μ0 + μ1 + γ1 ) I 

)
+ 

1 

2 

η2 S 2 

+ 

(
1 − 1 

R 

)(
γ1 I + v S(t) − μ0 R (t) 

))
, 

= � − (μ0 + v ) S − �

S 
+ βI + (μ0 + v ) + 

1 

2 

η2 I 2 

−(μ0 + μ1 + γ1 ) I − βS + (μ0 + μ1 + γ1 ) + 

1 

2 

η2 S 2 

+ γ1 I + v S − μ0 R − γ1 
I 

R 

− v 
S 

R 

+ μ0 , 

≤ � + βI + μ0 + v + 

1 

2 

η2 (S 2 + I 2 ) + μ0 + μ1 + γ1 

+ γ1 I + v S + μ0 , 

≤ � + 3 μ0 + v + η2 M 

2 + (β + γ1 + v ) M + μ0 + μ1 

+ γ1 + μ0 := K. (8) 

Consequently 

E 

[ 
H(S(τk ∧ T ) , I(τk ∧ T ) , R (τk ∧ T )) 

] 
≤ H(S(0) , I(0) , R (0)) + E 

[ ∫ τk ∧ T 

0 

Kdt 

] 
, 

≤ H(S(0) , I(0) , R (0)) + KT . (9) 

Setting 	k = τk ≤ T for k ≥ k 1 . As a result, Eq. (3) reads P ( 	k ) ≥ ε. 

Note that for every ω ∈ 	k , there exists at least one S ( τ k , ω), I ( τ k , 

ω), R ( τ k , ω) that equal k or 1 
k 
, and hence H ( S ( τ k ), I ( τ k ), R ( τ k )) is 

not less than k − 1 − log k or 1 
k 

− 1 + log k . Thus we have 

H(S(τk ) , I(τk ) , R (τk )) ≥ E 
(
k − 1 − log k 

)
∧ 

(
1 

k 
− 1 + log k 

)
. (10) 

It then follows from Eqs. (3) and (9) , that 

H(S(0) , I(0) , R (0)) + KT ≥ E 

[ 
1 	(ω) H 

(
S(τk ) , I(τk , R (τk )) 

)] 
, 

≥ ε
[ 
(k − 1 − log k ) ∧ 

(
1 

k 
− 1 + log k 

)] 
, 

(11) 

where 1 	( ω) is the indicator function of 	. Letting k → ∞ leads 

to the contradiction ∞ > H 

(
S(0) , I(0) , R (0) 

)
+ MT = ∞ , which im- 

plies that τ∞ 

= ∞ a.s. �

Remark 1. It is clear from Theorem 1 that for any initial 

value (S(0) , I(0) , R (0)) ∈ R 3 + , there is a unique global solution (
S(t) , I(t) , R (t) 

)
∈ R 3 + almost surely of the model (1) . Hence 

dN(t) ≤
(
� − μ0 N(t) 

)
. (12) 
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