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a b s t r a c t 

In this paper, we study a stochastic tuberculosis model with antibiotic resistance. By constructing a suit- 

able stochastic Lyapunov function, we establish sufficient conditions for the existence and uniqueness of 

an ergodic stationary distribution of the positive solutions to the model. Moreover, we obtain sufficient 

conditions for extinction of the disease. The existence of a stationary distribution implies stochastic weak 

stability. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent years, mathematical models have been regarded as a 

powerful tool in understanding the dynamic spread of tuberculosis 

(TB) (see e.g. [1–7] ) and it has been one of the most major pub- 

lic health problems facing society today. Tuberculosis is a bacte- 

rial disease with about one third of the world human population 

as its reservoir (see e.g. [8,9] ) and it remains the leading cause of 

death by an infectious disease in the world. As we know, tubercu- 

losis is caused by Mycobacterium tuberculosis. The disease is most 

commonly transmitted from a person suffering from infectious tu- 

berculosis to other persons by infected droplets created when the 

person with active TB coughs or sneezes. 

Antibiotic resistance in pathogenic bacteria can be defined mi- 

crobiologically or clinically. Microbiological resistance is the pres- 

ence of a genetically determined resistance mechanism, catego- 

rizing the pathogen as resistant or susceptible based on the ap- 

plication of a set cut-off in a phenotypic laboratory text while 

clinical resistance is a level of antimicrobial activity that is cor- 

related with a high likelihood of therapeutic failure [10] . Antibi- 

otics resistance has accompanied with the introduction of antibi- 

otics since shortly after penicillin was introduced [11] . Due to con- 
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tinuous evolution of new species, multi-antibiotic resistant bac- 

teria has been considered as serious threat to public health and 

these bacterial strains have already presented in different bacte- 

ria species and resulting in increased patient mortality [12] . As we 

know, incomplete treatment of patients with infectious TB can not 

only lead to relapse but also to the development of antibiotic resis- 

tant TB. Due to its sociological importance, the study of the spread 

of TB using mathematical models has received much attention (see 

e.g. [3–5,13] ). Especially, Castillo-Chavez and Feng [3] formulated 

one-strain transmission model to study the dynamics of TB. Their 

model takes the following form ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dS 

dt 
= � − βcSI 

N 

− μS, 

dL 

dt 
= 

βcSI 

N 

− (μ + k + r 1 ) L + 

β ′ cT I 

N 

, 

dI 

dt 
= kL − (μ + d) I − r 2 I, 

dT 

dt 
= r 1 L + r 2 I − β ′ cT I 

N 

− μT , 

N = S + L + I + T , 

(1.1) 

where the host population is divided into the following epidemio- 

logical class or subgroups: Susceptibles ( S ), Latent ( L , infected but 

not infectious), Infectious ( I ) and (effectively) Treated ( T ) individ- 

uals, N denotes the total population, � denotes the recruitment 

rate; β and β ′ are rate of transmission that susceptible and treated 
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individuals become infected by one infectious individual per con- 

tact per unit of time, respectively; c denotes the per-capita contact 

rate; μ represents the per-capita natural death rate of S , L , I and T , 

respectively; k is the rate at which an individual leaves the latent 

class by becoming infectious; d denotes the per-capita disease in- 

duced death rate, r 1 and r 2 denote per-capita treatment rates. The 

parameters involved in system (1.1) are positive constants. The ba- 

sic reproduction number for system (1.1) is R 0 = ( βc 
μ+ d+ r 2 )( 

k 
μ+ k + r 1 ) 

which determines the epidemic occurs or not. If R 0 < 1 , sys- 

tem (1.1) has a unique disease-free equilibrium E 0 = (S 0 , 0 , 0 , 0) = 

( �μ , 0 , 0 , 0) and it is globally asymptotically stable in the invariant 

set �. While if R 0 > 1 , then model (1.1) has two possible equilib- 

ria, i.e., the disease-free equilibrium E 0 and the unique positive en- 

demic equilibrium E ∗ = (S ∗, L ∗, I ∗, T ∗) , E 0 is unstable and E ∗ is lo- 

cally asymptotically stable, where � = { (S, L, I, T ) : S > 0 , L > 0 , I > 

0 , T > 0 , S + L + I + T ≤ �
μ } . These results can be found in the liter- 

ature [3] . 

Moreover, in an ecosystem, epidemic models are always af- 

fected by the environmental noise (see e.g. [14–18] ). For human 

disease related epidemics, the nature of epidemic growth and 

spread is random due to the unpredictability in person-to-person 

contacts [19] . Hence the variability and randomness of the envi- 

ronment is fed through the state of the epidemic [20] . In epidemic 

dynamics, stochastic models may be a more appropriate way of 

modeling epidemics in many circumstances (see e.g. [21–24] ). For 

instance, stochastic models are able to take care of randomness 

of infectious contacts occurring in the latent and infectious peri- 

ods [25] . It also has been shown that some stochastic epidemic 

models can provide an additional degree of realism in comparison 

with their deterministic counterparts (see e.g. [14,26–28] ). Particu- 

larly, Allee et al. [14] revealed that stochastic model should suit the 

question of disease extinction better. Herwaarden et al. [26] sug- 

gested that an endemic equilibrium in a deterministic model can 

disappear in its corresponding stochastic system due to stochastic 

fluctuations. And Näsell [27] formulated stochastic models to show 

that some stochastic models are a better approach to describe epi- 

demics for a large range of realistic parameter values in compari- 

son with their deterministic counterparts. 

There exist different approaches to introduce stochastic pertur- 

bations into the model, both from a mathematical and biological 

perspective [28,29] . In this paper, our approach to include stochas- 

tic perturbations is similar to that of Imhof and Walcher [16] . Here 

we assume that stochastic perturbations are of the white noise 

type which are proportional to S , L , I and T , influenced on the 
dS 
dt 

, dL 
dt 

, dI 
dt 

and 

dT 
dt 

in (1.1) . Then corresponding to system (1.1) , the 

stochastic version can be expressed as follows ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dS = 

[ 
� − βcSI 

N 

− μS 

] 
dt + σ1 SdB 1 (t) , 

dL = 

[ 
βcSI 

N 

− (μ + k + r 1 ) L + 

β ′ cT I 

N 

] 
dt + σ2 LdB 2 (t) , 

dI = [ kL − (μ + d) I − r 2 I] dt + σ3 IdB 3 (t) , 

dT = 

[ 
r 1 L + r 2 I − β ′ cT I 

N 

− μT 

] 
dt + σ4 T dB 4 (t) , 

(1.2) 

where B i ( t ) are mutually independent standard Brownian motions 

with B i (0) = 0 , σ 2 
i 

> 0 denote the intensities of the white noise, 

i = 1 , 2 , 3 , 4 . 

This paper is organized as follows. In Section 2 , we give some 

known results, definition and lemma which will be used in the fol- 

lowing analysis. In Section 3 , we show that there exists a unique 

global positive solution of system (1.2) . In Section 4 , we prove that 

there is a unique ergodic stationary distribution of the positive so- 

lutions to system (1.2) under certain condition. In Section 5 , we 

establish sufficient conditions for extinction of the disease. Finally, 

concluding remarks and future directions are provided to end this 

paper. 

2. Preliminaries 

In this section, we shall present some known results, definition 

and lemma which will be used later. Throughout this paper, unless 

otherwise specified, let (�, F , {F t } t≥0 , P ) be a complete probability 

space with a filtration {F t } t≥0 satisfying the usual conditions (i.e., 

it is increasing and right continuous while F 0 contains all P -null 

sets) and we also let B i ( t ) be defined on the complete probability 

space, i = 1 , 2 , 3 , 4 . We introduce the following notations: 

R 

d 
+ = { x = (x 1 , . . . , x d ) ∈ R 

d : x i > 0 , 1 ≤ i ≤ d} and 

R 

d 

+ = { x = (x 1 , . . . , x d ) ∈ R 

d : x i ≥ 0 , 1 ≤ i ≤ d} . 
Then we give some basic theory in stochastic differential equa- 

tions which is introduced in [15] . 

In general, consider the d -dimensional stochastic differential 

equation 

dX (t) = f (X (t)) dt + g(X (t )) dB (t ) for t ≥ t 0 , (2.1) 

with the initial value X(0) = X 0 ∈ R 

d . B ( t ) denotes a d -dimensional 

standard Brownian motion defined on the complete probability 

space (�, F , {F t } t≥0 , P ) . Denote by C 2 (R 

d ; R + ) the family of all 

nonnegative functions V ( X ) defined on R 

d such that they are con- 

tinuously twice differentiable in X . The differential operator L of 

Eq. (2.1) is defined by [15] 

L = 

d ∑ 

i =1 

f i (X, t) 
∂ 

∂X i 

+ 

1 

2 

d ∑ 

i, j=1 

[ g T (X, t) g(X, t)] i j 

∂ 2 

∂ X i ∂ X j 

. 

If L acts on a function V ∈ C 2 (R 

d ; R + ) , then 

LV (X ) = V X (X ) f (X ) + 

1 

2 

trace [ g T (X ) V XX (X ) g(X )] , 

where V X = ( ∂V 
∂X 1 

, . . . , ∂V 
∂X d 

) , V XX = ( ∂ 2 V 
∂ X i ∂ X j 

) d×d . According to Itô’s 

formula [15] , if X(t) ∈ R 

d , then 

dV (X (t)) = LV (X (t)) dt + V X (X (t)) g(X (t)) dB (t) . 

Definition 2.1 [30] . The transition probability function P ( s , x , t , A ) 

is said to be time-homogeneous (and the corresponding Markov 

process is called time-homogeneous) if the function P (s, x, t + s, A ) 

is independent of s , where 0 ≤ s ≤ t , x ∈ R 

d and A ∈ B and B denotes 

the σ -algebra of Borel sets in R 

d . 

Let X ( t ) be a regular time-homogeneous Markov process in R 

d 

described by the stochastic differential equation 

dX (t) = f (X (t)) dt + g(X (t )) dB (t ) . 

The diffusion matrix of the process X ( t ) is defined as follows 

A (x ) = (a i j (x )) , a i j (x ) = g i (x ) g j (x ) . 

Lemma 2.1 [30] . The Markov process X ( t ) has a unique ergodic sta- 

tionary distribution π ( ·) if there exists a bounded open domain D ⊂
R 

d with regular boundary �, having the following properties: 

A 1 : there is a positive number M such that 
∑ d 

i, j=1 a i j (x ) ξi ξ j ≥
M| ξ | 2 , x ∈ D , ξ ∈ R 

d . 

A 2 : there exists a nonnegative C 2 -function V such that LV is nega- 

tive for any R 

d \ D . 

3. Existence and uniqueness of the positive solution 

To study the dynamical behavior of a tuberculosis model, the 

first concern is whether the solution is global and positive. The fol- 

lowing result is regarded to the existence and uniqueness of the 
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