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a b s t r a c t 

Plasma is normally investigated via fluid dynamics, and to investigate the force and energy underlying 

a plasma chaotic system, it is first transformed into a Kolmogorov-type system. This system describes 

a general form of fluid and forced-dissipative rigid body system. The vector field of the plasma chaotic 

system is decomposed into four types of torque: inertial torque, internal torque, dissipation, and external 

torque. The Hamiltonian energy transfer between kinetic energy and potential is discovered. The various 

combinations of these four types of torque are constructed to uncover the effect of each on the generation 

of the dynamic mode of the chaotic system. The physical functions of the whistler and dampening of the 

pump are identified in producing the different plasma dynamics. Aside from the torque effects, the rate 

of change of the Casimir function is also a key factor in characterizing the orbit behavior of the plasma 

system. Last, a supremum bound of the plasma chaotic attractor is proposed. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Since the 50s, plasma physics has made much important 

progress and become a very active branch in physics. Plasma can 

be described by scattering wave and particle interaction theory 

from different aspects such as nonlinear oscillation, instability, tur- 

bulence, [1,2] . Furthermore, the waves in plasmas are an inter- 

connected set of particles and fields that propagate in a period- 

ically repeating fashion. Plasma as high-frequency damped waves 

has been studied in [3,4] ; this system is nonlinear and dissi- 

pative. Plasma has been investigated via fluid dynamics, a case 

in point being the non-isentropic hydrodynamic models for two- 

carrier plasmas [5] . Applying hydrodynamics, analytic results for 

the efficiency of the transfer of latent heat to bulk motions of the 

plasma have been obtained [6] . 

From fluid dynamics, we find that the effect of force and energy 

transfers is important in dynamic systems. A whistler is assumed 

to propagate as energy along a magnetic field in the plasma, and it 

can excite (through force impacts) plasma waves and ion acoustic 

waves parametrically. Because energy is transferred to the waves 

that are not in resonance with the pump, the decay of these ex- 

citations needs to be taken into account. Because of interaction 

of the wave force and dampening and energy transfer of Plasma, 

the chaotic behavior is induced. In 1978, Pikovski, Rabinovich and 
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Trakhtengerts introduced a plasma chaotic system [7] . When the 

pump amplitude is increased in the three-wave process, two of 

which are parametrically induced, a strange attractor appears. 

Very recently, in regard to plasma chaos, there have been some 

research on the chaotic characteristics of nonlinear systems, such 

as control, synchronization, and its application [8–10] . However, 

these aspects cannot explain the mechanism or offer reasons for 

the generation of different dynamic modes. The force, interaction, 

and energy transfer have not been investigated for plasma. To 

explore the underlying dynamics, the mechanics of chaotic sys- 

tems must be investigated. The impact of the damping force and 

whistler waves on plasma producing chaos can be uncovered by 

investigating the mechanics. The Kolmogorov system is a good 

starting point to investigate the mechanics of chaos because it 

has a general form that decomposes the force into inertial, in- 

ternal, dissipative and external [11] . In 1991, a Kolmogorov sys- 

tem was presented describing the dissipative-forced dynamic sys- 

tem and hydro-dynamic instability beginning with the Hamilto- 

nian function. Pasini and Pelino presented a unified treatment of 

the Kolmogorov and Lorenz systems thereby providing the forcing 

analysis of the Lorenz chaotic system [12] . Furthermore, Qi, et al., 

transformed the Qi four-wing chaotic system into a Kolmogorov- 

like system and employed this extended Kolmogorov system to 

perform a forcing analysis and energy cycling [13–15] . Liang and 

Qi transformed the Chen chaotic system into a Kolmogorov sys- 

tem to perform a forcing analysis and then interpreted the state of 

chaos as angular momentum [16,17] . In this regard, the Hamilto- 
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nian function, Casimir function, and the Kolmogorov system pro- 

vide a starting point to study the mechanisms underlying these 

chaotic systems. 

The problem is that both the Qi four-wing chaotic system and 

the Qi chaotic system were built from numerical simulations in- 

stead of being derived from a physical model [18,19] . However, the 

plasma chaotic system is a real physical process in a magnetoactive 

nonisothermal plasma arising from the stochastic self-oscillations 

of waves amplitudes [20] . Therefore, a mechanical analysis of the 

plasma chaotic system is necessary in applications using the Kol- 

mogorov model, which may help in the design and control of the 

system. Alternatively, plasma is a quasineutral, electrically conduc- 

tive fluid, and therefore we may study the plasma system by trans- 

forming it into a Kolmogorov-like system. 

The solution boundary is an important topic in chaos. Never- 

theless, it is often quite difficult to find the bound for a chaotic 

attractor. In this regard, the Casimir function, like enstrophy or the 

potential vorticity in the context of fluid dynamics, is very useful 

in analyzing the stability conditions and the global description of 

the dynamical system [21,22] . The energetics of the Lorenz system 

using the Casimir function has already been studied [23] . We find 

that the evolution of the Casimir function is closely related to the 

bound of the plasma chaotic attractor. 

Using the Kolmogorov form, this paper describes the decom- 

position of the vector field of torques into inertial, internal, dissi- 

pative and external contributions. Different dynamical modes arise 

from the different combination of torques. The functions of damp- 

ing and whistler modes in producing different dynamics are ana- 

lyzed. The supremum bound is analytically found using the rate of 

change of the Casimir function. 

The rest of the paper is organized as follows: In Section 2 , the 

original plasma chaotic system is transformed into a Kolmogorov 

system, and then the mechanics of the plasma chaotic system is 

analyzed. Section 3 investigates the mechanism underlying the dif- 

ferent dynamic modes. In Section 4 , the boundary of the chaotic 

attractor is established. A conclusion is given in Section 5 . 

2. Kolmogorov transformation of plasma chaotic system 

In plasma an ionized gaseous substance becomes highly elec- 

trically conductive, so the long-range electric and magnetic fields 

dominate the behavior of the matter. By modeling the plasma as a 

fluid, an ordinary differential equation (ODE) was obtained from a 

partial differential equation (PDE) describing the plasma. The equa- 

tions for the amplitudes of the interacting waves in magnetoactive 

plasma were obtained in standard fashion from the fluid equations 

describing the radio-frequency oscillations of an electron gas and 

from the kinetic equations describing the excitation of the radia- 

tion oscillation of the ion-acoustic wave. With n , v , ϕ denoting the 

radio-frequency density, velocity, and potential, respectively, the 

PDEs for this plasma system are [24,25] 

∂v 

∂t 
+ [ v �e ] − e 

m 

∇ϕ + S 1 = 0 , 

∂n 

∂t 
+ n 0 div v + S 2 = 0 . (1) 

Here �e is the cyclotron frequency, S 1 = (v ∇) v d + ( v d ∇) v , S 2 = 

div ( n d v + n v d ) ; n d , v d are the low-frequency variations associated 

with the density and velocity of the electrons; and n 0 is their equi- 

librium density. Based on a dimensional analysis of system (1) , 

Sturman [26] and Pikovskii, Rabinovich, and Trakhtengerts [7] ob- 

tained the simplest resultant equations by changing from natural 

variables n k and n x to normal (dimensionless) amplitudes a k and 

b x with 
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where n k and n x are the Fourier components of the variations 

of the electron densities. ω p = (4 πe 2 n 0 m 

−1 ) 1 / 2 , ω H = eH (mc) −1 , 

ω k = ω p ω H (ω 

2 
p + ω 

2 
H ) 

−1 / 2 cos ( ̂  k z ) , k is the plasma wave vector, 

z ‖ H, H is the magnetic field, T e is electron temperature, �x is ion 

sound frequency. 

As the statements in [27] , Pikovskii et al. [7] found that a 

whistler can destabilize magnetoactive plasma using exciting the 

lower hybrid wave together with the ion acoustic wave (the longi- 

tudinal compression wave in the ion density of a plasma). Specif- 

ically, the whistler at frequency ω q excites a plasma wave at fre- 

quency ω k and the ion acoustic wave at frequency �x = ω q − ω k . 

We call a k the normal amplitude of the wave at frequency ω k and 

b x the normal amplitude of the ion acoustic wave. As a result of 

the decay of these excitations, at least a third synchronous wave 

is produced (of normal amplitude a k 1 ). The dynamics of the inter- 

action of wave in the plasma propagating parallel to the magnetic 

field with ion acoustic wave and plasma oscillation near lower hy- 

brid resonance is described as follow [7,27] : 

˙ a k = −b x a k 1 − v 1 a k + hb ∗x , 

˙ b x = a k a 
∗
k 1 

− v 2 b x + ha ∗k , 

˙ a k 1 = a k b 
∗
x − a k 1 , (3) 

where a ∗
k 
, b ∗x , a ∗k 1 are conjugate of a k , b x , a k 1 . h is proportional to 

the amplitude of pump, which is the electric field of the whistler; 

v 1 and v 2 are the damping decrements of the excited hybrid and 

acoustic waves normalized to the damping of the synchronous 

wave. We study the dynamics of real wave amplitudes a k , b x , a k 1 
which can be shown that they correlate as t → ∞ , i.e., 

˙ a k = −b x a k 1 − v 1 a k + h b x , 

˙ b x = a k a k 1 − v 2 b x + h a k , 

˙ a k 1 = a k b x − a k 1 . (4) 

To discover the physical analogue of the state variables and the 

mechanics of the above system, we introduce the Kolmogorov sys- 

tem, which is a generalized Euler equation with dissipation and 

generalized external torque. The Kolmogorov system is a general 

model for a class of chaotic system that is useful in analyzing force 

and energy transfer [13] . The Kolmogorov system is written [11] 

˙ x = { x , H} − �x + f , (5) 

where x = [ x 1 , x 2 , x 3 ] 
T , { x , H } representing the Lie–Poisson 

bracket of the Hamiltonian function of the system, denoted H , �

is a positive definite diagonal matrix, −�x represents the dissipa- 

tion, and the last term f represents generalized external torque (or 

force). 

Next, we establish an analogy between the plasma chaotic sys- 

tem and the Kolmogorov system. We have to identify the Lie–

Poisson bracket, the dissipative terms, and external torque parts, 

respectively. The Euler equation for an incompressible fluid or a 

free rigid body is written [28] 

˙ x = { x , K} = x × �x , (6) 

where 

K = 

1 

2 

(
�1 x 

2 
1 + �2 x 

2 
2 + �3 x 

2 
3 

)
(7) 

is the kinetic energy, � = diag( �1 �2 �3 ) , �i = I −1 
i 

, I i is the 

principle moment of inertia for the group SO(3), and x i the angu- 

lar momentum satisfying x i = I i ω i , and ω i the angular velocity. In 
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