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a b s t r a c t 

Smart antenna can effectively suppress multipath interference, co-channel interference, and improves the 

transmission quality of signal and the utilization of spectrum, so it is widely applied in wireless commu- 

nication network. To explore the optimization problem about smart antenna receiving array and sensor 

network which exists in radar, sonar and other systems, here we presents a kind of adaptive beam- 

forming algorithm based on diagonal-loading and mean square error (MSE) criterion. Such a novel al- 

gorithm could give the optimal solution of weight direction vector, and at the same guarantees its own 

robustness. Furthermore, it also possesses the advantage of shortening the convergence time of weight 

direction vector, and decreasing the sensitive issue of model error in high SNR environment. In our sim- 

ulation experiments, it is shown that the proposed algorithm improves the performance of receiver net- 

work in sonar system, and to a certain extent achieves the signal optimization. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

Underwater Acoustic Imaging technology has been frequently 

used in many military and civilian fields, including underwater tar- 

get detection, sunken ships searching, underwater landscape draw- 

ing, the black box salvaging, etc. In order to achieve a certain dis- 

tance high-resolution acoustic imaging of target object under the 

water, it seems very constructive and worth great attention to 

study stable imaging technology for complex sounds of the un- 

derwater environment, with certain imaging frame rate and action 

distance [1] . Hence, underwater acoustic imaging adaptive beam- 

forming algorithm plays a significant role, which not only involves 

the robustness of algorithm, but also improves the output SNR of 

system at the cost of low calculation. 

Adaptive beam-forming technology changes the pattern of array 

by adjusting the weight vector, to make main lobe aim at desired 

signal, and side lobes aim at interfering signal, so as to increase 

the output SNR, and achieve best reception under certain criteria. 

LMS adaptive beam-forming algorithm is a beam forming 

method, which has simple structure, low complexity, easy for im- 

plementation and high stability. Because of its slow convergence, it 

suffers from some certain restriction when applied in engineering 

applications. Addressed on this problem, several adjustment strate- 

gies were proposed by the research community, such as instanta- 
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neous error, right forward prediction vector, and smoothing gradi- 

ent vector, and propose variable step size LMS algorithm, so as to 

balance convergence speed and algorithm disorders [2] . Although 

these algorithms show better performance on balancing conver- 

gence speed and disorders than the classical LMS algorithm, their 

ability to cope with the mutation problem were decreased. 

As one of the criteria to determine the best reception, Widrow 

et al. proposed with the mean square error (MSE) performance 

measure [3] . Wiener and Hopf deduced the optimal Wiener solu- 

tion [4] . Based on MSE criterion, classic LMS algorithm get optimal 

weight vector, by utilizing optimization methods such as the steep- 

est descent method, and accelerating gradient method. 

Based on the above discussion, we propose a robust adaptive 

beam-forming algorithm based on MSE criterion and diagonal- 

loading technique (Some scholars have studied the adaptive beam- 

forming algorithm based on the coupling coefficient [5–8] ). In this 

algorithm, it reconstructs sampling covariance matrix by artificially 

injecting white noise into the sampling covariance matrix diagonal 

line, which is named as diagonal-loading. Then it uses the formula 

of matrix inversion to avoid the calculation of matrix inversion and 

iteration, and converts the diagonal-loading coefficient into LMS al- 

gorithm step factor function. Simulation results show that this al- 

gorithm can effectively reduce convergence time, and have better 

robustness at high and low SNR environment. 
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2. The model of signal 

The proposed algorithm is based on the linear array of flat 

space. The following conditions should be satisfied: 

(1) Array elements are equally spaced 

(2) Narrowband assurance: This ensures that all array elements 

almost received the signal simultaneously, and the signal en- 

velope that is received between the array elements does not 

change. 

(3) Ignore the mutual coupling between array elements. 

(4) The number of signals to be smaller than the number of ar- 

ray elements, and the array of the received signal DOA all 

different from each other. 

(5) Plane wave assumptions: The distance from the sources to 

array is much larger than the distance between array ele- 

ments, so that all incoming signals to the array can be ap- 

proximated as plane waves. 

2.1. Parameters declaration 

M The number of array elements; 

d The distance of the array, d = λ/ 2 ; 

λ The received signal wavelength of array elements; 

L The number of the echo sources; 

θ i The DOA of the echo sources, θi = { θ1 , θ2 , ..., θL } ; 
d ( t ) The reference signal. 

2.2. Signal receiving model 

In the first array element of the array as a reference, the value 

of the k-th sample snapshot at a sampling point m (1 ≤ m ≤ M ) can 

be expressed as 

x m 

(k ) = 

L ∑ 

i =1 

s i (k ) exp 

[ 
j 
2 π

λ
(m − 1) d sin θi 

] 
+ n m 

(k ) (1) 

Here, n m 

( k ) represents the noise on the m-th array element and 

s i ( k ) means each echo source’s base-band signal at the reference 

point. Then we can get the model of array output in the time do- 

main 

y (t) = ω 

T x (t) (2) 

The expression after sampling is 

y (k ) = ω 

T x (k ) (3) 

Here, x ( k ) represents the input of array ( x ( k ) = 

[ x 1 ( k ) , x 2 ( k ) , ... x M 

(k ) ] T ), and ω represents the weight vector 

on the array elements ( ω = [ ω 1 , ω 2 , ..., ω M 

] T ). 

2.3. MSE performance metric 

The error between reference signal and actual output signal can 

be represented by the equation that followed: 

ε(t) = d(t) − y (t) = d(t) − ω 

T x (t) (4) 

Then, square this equation, we get: 

ε 2 (t) = d 2 (t) − 2 d(t ) ω 

T x (t ) + ω 

T x (t ) x 

T (t ) ω (5) 

On both sides of the equation, we seek mathematical expecta- 

tion: 

E{ ε 2 (t) } = d 2 (t) − 2 ω 

T R xd + ω 

T R xx ω (6) 

In the above formula: d 2 (t) represents the mathematical expec- 

tation of d ( t ); R xd represents the cross-correlation matrix of ref- 

erence signal and actual output signal, that is R xd = E{ d(k ) x T (k ) } . 
The self-correlation matrix is expressed by R xx = E{ x s x s H } . 

Let d 2 (t) = S, thus we get the formula base on the MSE perfor- 

mance metric: 

E{ ε 2 (t) } = S − 2 ω 

T R xd + ω 

T R xx ω (7) 

Select an appropriate weight vector ω, we can minimize 

E { ɛ 2 ( t )}. Eq. (7) is a quadratic function of the weight vector ω, 

with its extreme value being a minimum. Then, using gradient al- 

gorithm, we could get the optimal solution ω opt of above formula, 

which satisfies: 

ω opt = R 

−1 
xx R xd (8) 

3. The derivation of algorithm 

In terms of beam forming algorithm, LMS algorithm as a fixed 

step size LMS algorithm, its iterative formula of the weight vector 

can be expressed by the following equation 

ω(k + 1) = ω(k ) − μ∇(k ) (9) 

In order to overcome the covariance matrix inversion operation, 

LMS algorithm uses the steepest descent method to solve formula 

(9) , which can get the iterative formula of LMS algorithm as fol- 

lowing: 

ω(k + 1) = ω(k ) + μx (k ) e ∗(k ) (10) 

Here, μ represents the step factor which controlling adaptive 

rate. The range of step factor μ is discussed and analyzed in lit- 

erature [9,10] . Let’s assume that it satisfies: 0 < μ < 

1 
γmax 

. When 

the number of iterations increases infinitely, we can prove that 

the weight vector expectations converge to the Wiener solution. 

This algorithm is improved by several different methods [11–13] , in 

which the calculations of the eigenvalues decomposition and inver- 

sion of covariance matrix could be avoided. However, the optimal 

weight vector values still need to be calculated by iteration. The 

adaptive beam-forming method proposed in this paper is based on 

the LMS algorithm, and by avoiding the calculation of iteration, the 

proposed algorithm makes it faster to convergence to the optimal 

value. 

To enhance the robustness of adaptive beam-forming, the 

diagonal-loading technique has been used to suppress pattern dis- 

tortion. According to the signal model mentioned in the second 

part, the actual sampling covariance matrix R xx is replaced by an 

estimate of the k-th signal sampled: 

ˆ R xx = 

1 

K 

K ∑ 

k =1 

x (k ) x 

H (k ) (11) 

Thus, formula (8) can be expressed as: 

ω opt = 

ˆ R 

−1 
xx R xd (12) 

Here, the diagonal loading is applied to the weight vector cal- 

culation of the algorithm. We can get 

˜ R xx = (ξ I + 

ˆ R xx ) (13) 

Lemma. Assume matrix A ∈ C 

n × n , and its inverse matrix exists, x 

and y are n × 1 vectors, which makes (A + x y H ) reversible, that is 

(A + x y H ) −1 = A 

−1 − A 

−1 x y H A 

−1 

1 + y H A 

−1 x 

(14) 

And it can be extended to the inverse formula of matrix sum, 

that is 

(A + UBV ) −1 = A 

−1 − A 

−1 UB (B + BV A 

−1 UB ) −1 BV A 

−1 

= A 

−1 − A 

−1 U (I + BV A 

−1 U ) −1 BV A 

−1 (15) 
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