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In this paper, we present a single species model with cannibalism and nonlocal effect. The existence of 

traveling wave fronts connecting the equilibrium 0 to the equilibrium 

Kr 
r+ Kh 

is proved when the wave 

speed c ≥ 2 
√ 

r . 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Mathematical model is an important and effective tools of solv- 

ing practical problems. From the perspective of mathematical dy- 

namics, it is enable to analyze some biological phenomena more 

precisely. For instance, single-species models can reveal intraspe- 

cific interactions and relationships between the species and the 

environment. In the long run of course, logistic growth is relatively 

reasonable [1] . And intraspecific interactions are competition, can- 

nibalism and altruism. In reality, the time delay and spatial dif- 

fusion is universal [2–8] . Specifically, time delay is common and 

inevitable in nature which denotes resource regeneration time, in- 

dividual mature period, lactation time, feedback time and so on. 

Murray proposed the following differential delay equation [1] : 

dN 

dt 
= rN (t) 

[
1 − N (t − T ) 

K 

]

where r, K and T are positive constants. It means that the regu- 

latory effect depends on the population at an earlier time t − T , 

rather than that at t . In the model, time delay T can be interpreted 

as maturity period. 
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Moreover, explanation of the diffusion is that every individual 

walks in a random way instead of standing still [9–12] . And un- 

der the assumption of the unbiased motion, we have derived the 

mathematical formula with regarding to diffusion by the method 

of probability analysis [1,13–15] . In general, Laplace term can rep- 

resent species diffusion, whereas, which only describes small scale 

diffusion, that is local diffusion. As is well known, the individual is 

moving all the time. So, for the case of the individual being at x 

at time t , we must take account of the fact that it may not have 

been at any given previous time t − T . Britton firstly proposed the 

idea of combining time delay with the weighted average of space, 

that is adding the convolution of time and space to the reaction- 

diffusion equation with delay [16–18] , and the spatio-temporal de- 

lay is put in the place of nonlinear term. Britton proposed the 

reaction-diffusion model with nonlocal delay: 

∂ 

∂t 
u (x, t) = � u (x, t) + u (x, t)[1 + au (x, t) − (1 + a )(h ∗ u )(x, t)] , 

x ∈ �, t > 0 , 

where 

(h ∗ u )(x, t) = 

∫ t 

−∞ 

∫ 
�

h (x − y, t − s ) u (y, s ) d yd s. 

Traveling wave solutions of reaction-diffusion equation can de- 

pict the long term behaviors of species. And it’s known that trav- 

eling wave front is one of the traveling wave solutions. There have 

been many scholars studying the traveling wave fronts [19–21] . 
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In this paper, we are concerned with the following reaction dif- 

fusion equation with nonlocal effect and logistic growth and can- 

nibalism: 

∂u 

∂t 
= u xx + ru 

[
1 − ( f ∗ u )(x, t) 

K 

]
− hu 

2 in R × (0 , ∞ ) , (1) 

where r represents the intrinsic growth rate of the species, K rep- 

resents the capacity of the environment. As for the term hu 2 sig- 

nifying intraspecific cannibalism, speaking specifically, intraspecific 

cannibalism defined as intraspecific predation is a widespread phe- 

nomenon in a variety of animals. From the view of the individual 

level, it results in an increase in death rate. At the population level, 

cannibalism has the potential of regulating population size. And 

the cannibalism term can interpret as the situation that an individ- 

ual encounters with another by interaction with constant cannibal- 

ism rate h . More details can be found in Refs. [22–25] . The kernel 

f (x, t) ∈ L 1 (R × (0 , ∞ )) satisfies f (x, t) ≥ 0 , 
∫ t 
−∞ 

∫ + ∞ 

−∞ 

f (y, s ) d yd s = 

1 and 

( f ∗ u )(x, t) = 

∫ t 

−∞ 

∫ + ∞ 

−∞ 

f (x − y, t − s ) u (y, s ) d yd s. 

System (1) has two constant equilibria 

u 1 := 0 , u 2 := 

Kr 

r + Kh 

. 

Without loss of generality, we set the kernel function as the fol- 

lowing form: f (x, t) = 

1 √ 

4 πρ
e 
− x 2 

4 ρ δ(t) , where ρ signifies nonlocal 

effect [26] . 

In this paper, we show traveling wave fronts of system (1). 

More specifically, the existence of traveling wave fronts with the 

wave speed c ≥ 2 
√ 

r is proved from the equilibrium 0 to the equi- 

librium 

Kr 
r+ Kh 

. 

2. Existence of traveling wave fronts 

In this section, we firstly prove the existence of traveling wave 

fronts on R with c > 2 
√ 

r by using the method of sub- and super- 

solutions [26–28] . Next, for the case of c = 2 
√ 

r , we use some pri- 

ori estimates [19–21] and the Leray–Schauder degree theory [29] to 

find a solution on a finite interval and then we set a → + ∞ to ob- 

tain a solution of system (3) on R . 

Considering the traveling wave fronts of system (1) , we let 

u (x, t) = ϕ(x + ct) � ϕ(t) , then put it into system (1) 

cϕ 

′ (t) = ϕ 

′′ (t) + rϕ 

[
1 − ( f ∗ ϕ)(t) 

K 

]
− hϕ 

2 , t ∈ R . (2) 

where ( f ∗ ϕ)(t) = 

∫ + ∞ 

0 

∫ + ∞ 

−∞ 

f (y, s ) ϕ(t − y − cs ) d yd s = ∫ + ∞ 

−∞ 

1 √ 

4 πρ
e 
− y 2 

4 ρ ϕ(t − y ) dy. 

Making variable substitution ψ(t) = 

ϕ(t) 
Kr 

r+ Kh 

, (2) is changed into 

the following equation: 

cψ 

′ (t) = ψ 

′′ (t) + rψ 

[
1 − r 

r + Kh 

( f ∗ ψ)(t) − Kh 

r + Kh 

ψ 

]
, t ∈ R . 

(3) 

where ( f ∗ ψ)(t) = 

∫ + ∞ 

−∞ 

1 √ 

4 πρ
e 
− y 2 

4 ρ ψ(t − y ) dy. 

Theorem 1. For any c ≥ 2 
√ 

r , there exists a traveling wave fronts 

u (x, t) = ϕ(x + ct) = ϕ(t) satisfying system (2) which means that 

ψ( t ) satisfies system (3) under the asymptotic boundary conditions 

lim 

t→−∞ 

ψ(t) = 0 , lim 

t→ + ∞ 

ψ(t) = 1 . (4) 

2.1. Existence of traveling wave fronts on R with c > 2 
√ 

r 

In this part, we prove the first part of Theorem 2 . 

Denote (Fψ)(t) := rψ[1 − r 
r+ Kh 

( f ∗ ψ)(t) − Kh 
r+ Kh 

ψ] . 

Lemma 1. There exists a γ 1 such that (Fψ 2 )(t) + γ1 ψ 2 (t) ≥
(Fψ 1 )(t) + γ1 ψ 1 (t) on t ∈ R , for any ψ 1 ( t ), ψ 2 ( t ) which satisfies 

(i) 0 ≤ψ 1 ( t ) ≤ψ 2 ( t ) ≤ 1 ; 

(ii) e γ1 t [ ψ 2 (t) − ψ 1 (t)] and e −γ1 t [ ψ 2 (t) − ψ 1 (t)] is respectively 

increasing and decreasing. 

Proof. Since ψ 1 ( t ), ψ 2 ( t ) satisfies (i),(ii), we have 

(Fψ 2 )(t) − (Fψ 1 )(t) = rψ 2 (t)[1 − r 
r+ Kh 

( f ∗ ψ 2 )(t) −
Kh 

r+ Kh 
ψ 2 (t)] − rψ 1 (t)[1 − r 

r+ Kh 
( f ∗ ψ 1 )(t) − Kh 

r+ Kh 
ψ 1 (t)] ≥

− r 
r+ Kh 

[ ψ 2 (t) − ψ 1 (t)] − r 2 

r+ Kh 
[( f ∗ ψ 2 )(t) − ( f ∗ ψ 1 )(t)] −

r 
r+ Kh 

[ ψ 2 (t) − ψ 1 (t)] − r 2 

r+ Kh 
{ ∫ + ∞ 

−∞ 

1 √ 

4 πρ
e 
− y 2 

4 ρ [ ψ 2 (t − y ) − ψ 1 (t −

y )] dy } ≥ − r +2 r 2 e ργ 2 

r+ Kh 
[ ψ 2 (t) − ψ 1 (t)] ≥ −γ1 [ ψ 2 (t) − ψ 1 (t)] . 

We take γ1 > 

r +2 r 2 e ργ 2 

r+ Kh 
. 

The following equation � c (λ) = λ2 − cλ + r = 0 , yields two 

roots 

0 < λ1 = 

c − √ 

c 2 − 4 r 

2 

< λ2 = 

c − √ 

c 2 + 4 r 

2 

. 

Define 

q (t) = 

1 

1 + αe −λ1 t 
, p( t) = max { e λ1 t (1 − Me εt ) , 0 } 

where 0 < ε < λ1 , α < 

λ1 
2(γ + λ1 ) 

, and M ≥

max { 1 α , − r(1+ e 
λ2 

1 
16 ρ ) 

� c (λ1 + ε) 
, 1 

1 −α } . �

Lemma 2. There are a supersolution q ( t ) and a subsolution p ( t ) of 

system (3) such that q ( t ) is increasing on t ∈ R , and q ( t ) ≥ p ( t ), q ( t ) 

satisfies (4) as well. 

Proof. We divide our discussions into two steps. 

Step 1. q ( t ) is a supersolution and p ( t ) is a subsolution of system 

(3) . 

Suppose distribution function 

F (y, ρ) = 

∫ y 

−∞ 

1 √ 

4 πρ
e −

ξ2 

4 ρ dξ , 

then F (−∞ , ρ) = 0 , F (0 , ρ) = 

1 
2 , 

∂ 
∂y 

F (y, ρ) = 

1 √ 

4 πρ
e 
− y 2 

4 ρ . 

Since lim y →−∞ 

e −λ1 y F (y, ρ) = 0 , we obtain by partial integra- 

tion: ∫ 0 

−∞ 

e −λ1 y F (y, ρ) dy = − 1 

λ1 

∫ 0 

−∞ 

F (y, ρ) d(e −λ1 y ) 

= − 1 

2 λ1 

+ 

1 

2 λ1 

e ρλ2 
1 + 

1 

λ1 

√ 

π
e ρλ2 

1 

∫ √ 

ρλ1 

0 

e −y 2 dy. 

Define 

G −(y, ρ) = 

∫ y 

−∞ 

e −λ1 ξ F (ξ , ρ) dξ , 

G + (y, ρ) = 

∫ y 

−∞ 

e λ1 ξ F (ξ , ρ) dξ , 

then, 

G −(−∞ , ρ) = 0 , 

G −(0 , ρ) = − 1 

2 λ1 

+ 

1 

2 λ1 

e ρλ2 
1 + 

1 

λ1 

√ 

π
e ρλ2 

1 

∫ √ 

ρλ1 

0 

e −y 2 dy, 

G + (−∞ , ρ) = 0 . 
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