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a b s t r a c t 

We present an approximate analytical solution for the connectivity of a network model with a “non- 

simultaneous” linking scheme. This model exhibits node-space correlations in the link distribution, 

anomalous fluctuations in the time series of the connectivity variable, and a finite-size effect: the max- 

imum number of links occurs away from the critical value of the system parameter. We derive an exact 

Master Equation for this model in the form of an infinitesimal time-evolution operator. Fluctuations are 

much more important than the mean-field approximation predicts, which we attribute to the hetero- 

geneity in the model. Finally, we give a sketch of possible real world applications where the value of a 

network is related to the number of links. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

1. Introduction 

Complexity is a polymorphous concept, with definitions that 

vary from one discipline to another. Herein, we will refer to a sys- 

tem as complex if it exhibits spontaneous emergent phenomena 

over a small range of values of the free parameter(s) of the system. 

One of our working hypotheses is that complexity is closely tied to 

heterogeneity. The results below indicate that node heterogeneity 

is instrumental in determining the degree of interconnectedness in 

a model for network dynamics. 

Our model demonstrates that finite-size effects can be ex- 

tremely important, especially in systems that display phase transi- 

tions. Furthermore, the interplay between risk and profit indicated 

by the model leads one to the conclusion that there is an optimal 

size for types of networks that obey the same general principles, 

for example economic, biological, and sociological groups large and 

small [1] . 

Since we work with a network with a dynamic topology, it is 

the fluctuations and heterogeneity of the network that are most 

relevant to the behaviors observed. Indeed, at the parameter values 

at which the network is complex, these fluctuations in the degree 

of interconnectedness become extraordinarily large, comparable in 

size with their allowed range. 
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This emphasis on the dynamical aspects of network properties 

represents a departure from the standard approaches to studying 

networks. Most social and financial networks have been studied 

with an emphasis on their characteristic topological features, es- 

pecially the patterns of connection (often referred to as complexity) 

between their elements [2,3] . For example, financial economists 

have largely discussed the benefits of interactions among finan- 

cial intermediaries. Some degree of interconnectedness is crucial 

to the proper functioning of financial systems, as no single insti- 

tution can access the full range of available capital and investment 

opportunities in the economy. Connections among financial insti- 

tutions are also assumed to facilitate risk sharing, decrease the un- 

certainty faced by individual agents, and so allow agents to offer 

better services to the economy. 

On the other hand, complexity is also regarded as a source of 

system breakdown [4] . In particular, increasing interconnectedness 

in the market in terms of contracts among financial institutions 

comes at the price of increasing inaccuracy in the estimation of 

systemic risk [5] . So, in financial markets, the challenge for market 

participants, policymakers, and regulators is to find a balance be- 

tween the benefits of interconnectedness and its potentially harm- 

ful destabilizing effects [6,7] . 

In the present paper, we examine a model from a new net- 

work class based on agent preferences, namely preferred degree 

networks [8] , where the number of links continuously fluctuates 

and the system has a non-trivial steady state distribution. In this 

class of networks, the system undergoes a phase transition from 
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a sparsely connected network to a densely connected one. The 

intermediate critical condition is the condition of maximal popu- 

lation heterogeneity among the nodes and the system shows an 

abrupt onset of anomalously large fluctuations in the network con- 

nectivity, which emphasizes the heterogeneity of the units’ pref- 

erences. Our analytical results reveal that these large fluctuations 

are poorly accounted for by the mean-field approximation of the 

model. 

This class of networks differs from the standard literature of 

pairwise network formation [9] in that a link is not a bilateral 

compromise between pairs of nodes. An asymmmetry that is in 

contrast with the statistical symmetry present in other common 

methods of generation of random graphs, such as via a linking 

probability matrix. 

This class of models is based on the initiative of single units, 

which according to their preferences can propose to generate or 

destroy a connection with another node (which can accept or re- 

ject the proposition). This change of perspective introduces a dra- 

matic difference in the dynamics of networks displaying the emer- 

gent phenomena typical of complex systems. 

The model which we analyse has two types of units [10] : gener- 

ators and destroyers of links. We propose an analytical solution for 

the equilibrium mean value of the connectivity, which exhibits a 

phase transition. We provide a closed-form equation for the phase 

transition thereby characterizing the correspondent critical point. 

These results are obtained using a relativity new approach to 

stochastic processes which makes use of mathematical notations 

reminiscent of the quantum mechanical formalism [11] , and a 

mean-field approximation to the Fokker–Planck equation for the 

probability density of links. This approach has been turned out 

to be crucial, since no purely analytical prediction has been ob- 

tained so far for this model, see [8–10,12,13] ), where authors have 

used a more standard approach to stochastic processes. In order to 

provide a microscopic description of the network, we write an ap- 

proximate Langevin equation, which allows one to characterize the 

network in terms of emergent properties at criticality through the 

study of spatial and temporal correlations. Additionally, we high- 

light some limitations of the mean-field approximation in captur- 

ing the heterogeneity of the nodes in their dynamics of creating 

and destroying links. These corrections are non-negligible when 

the system is at its critical point. 

As further hallmarks of complexity, we stress the importance 

of finite-size effects, observing how finite networks produce more 

links away from the critical condition. Indeed, real-world systems’ 

statistical properties are affected by finite-size and other trunca- 

tion effects which can play an important role in defining the com- 

plexity of networks in terms of the effects of systems in con- 

strained situations such as a limited number of units in the system 

(i.e., small groups), which is related to coordination issues [14] . 

This gives rise to a paradigm of emergent properties of groups in- 

cluding the fact that larger team sizes lead to an increasing need 

for coordination that can limit the efficiency of group members, 

drawing attention to the optimal connectivity condition as a func- 

tion of the global size of the network. 

The model we describe is an expository model, having the pur- 

pose of highlighting and explaining the most crucial mechanisms 

underlying the phenomena of complex evolving systems as dis- 

cussed in many disciplines, in particular economics and finance 

[15–18] . 

So, without any predictive intention, we set forth an abstract 

example of a system which gains value according to its intercon- 

nectedness, and bears a cost depending on the number of active 

nodes (i.e., generators of links). The resulting profitability shows 

a signature of complexity in terms of finite-size network effects: 

small groups reach a maximal profitability far from the critical 

point of maximal heterogeneous population, but they tend to suf- 

fer less uncertainty of the expected connectivity. As the size of the 

network increases, we imagine that the system tends to organize 

itself near a critical point where the network has its maximal prof- 

itability; however, this point is also associated with a very high 

uncertainty (connection volatility). In this state, the system can be 

more vulnerable to possible systemic failure since it spends some 

part of its time in an unprofitable state. In terms of social and eco- 

nomic policy, minimizing the importance of heterogeneity also in 

mathematical terms (by using the mean-field approximation) leads 

one to drastically underestimate the size of fluctuations at the crit- 

ical point, which could lead to an underestimation of the risk in 

the system. 

2. The generators–destroyers model and its analytical 

description 

Among the possible models in the class of unit-driven net- 

works, we select the most simple heterogeneous case where we 

have a bipartite graph in which two types of nodes exist: one 

group of nodes aims to create new links every time they are se- 

lected, the other group aims to cut a link with previously con- 

nected partners. 

The Generators–Destroyers model is a model for the intergroup 

link dynamics between a group of link generators and a group of 

link destroyers directly derived from the introvert-extrovert model 

(XIE) as introduced and studied in [8,10] . In the following calcu- 

lations, it is assumed that time is continuous (in the sense that 

there is no fixed minimum time between changes in the number 

of links), one can think of this as an event-based approach. Links 

are bi-directional, and there can be at most one link between any 

two units. Neither self-links nor intragroup links are considered, as 

these subgraphs quickly go to a static equilibrium state, thus the 

graphs produced come from a subset of the set of simple graphs. 

The generators create links as long as there is at least one de- 

stroyer available to which it has no link. Destroyers destroy links 

until they are not linked to any generators. 

It is convenient to represent a graph in terms of a matrix, called 

the adjacency matrix. This matrix is formed by enumerating the 

vertices of the graph, the i, j th entry of the matrix is the number 

of links from vertex i to vertex j . In the model under consideration, 

the links are bi-directional, and there is at most one for every pair 

of vertices, so the adjacency matrix is symmetric (a bi-directional 

link consists of one unidirectional link in each direction) and con- 

sists of ones and zeros (either a link is occupied or it is not). Since 

the graph is dynamical in the generators–destroyers model, so is 

its associated adjacency matrix. 

As mentioned in the introduction, since the standard tools for 

studying stochastic processes have not sufficed to find an analyt- 

ical solution for the phase transition of the present system, as a 

possible path towards an analytical solution to this model, the au- 

thors found useful to give to the dynamics of the system a physi- 

cal interpretation in terms of an operator formalism like that used 

for the harmonic oscillator in quantum mechanics. In the follow- 

ing theoretical treatment, we model the dynamics as due to the 

action of an infinitesimal stochastic time-evolution operator H on 

the adjacency matrix. One can imagine such an operator as a sum 

of simpler operators, one for each element of the adjacency matrix. 

In the present mathematical description we focus on an analyti- 

cal treatment in terms of the average number of links and link dis- 

tribution, instead of the degree-distribution and average degree as 

in [9] . In order to derive an equation of motion for the link distri- 

bution, we write a Fokker–Planck equation for this model starting 

from the formalism of creation and annihilation operators whose 

basic notions are elucidated in Appendix A . The only free parame- 

ter in this representation is the total rate of events, i.e., an overall 
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