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a b s t r a c t

In this paper we first provide an overview of the recently formulated nonlinear constitutive
framework for the quasi-static response of electroelastic solids and its isotropic specializa-
tion. The general theory exhibits a strong nonlinear coupling between electric and mechan-
ical effects. The main part of the paper focuses on the governing equations describing the
linearized response of electroelastic solids superimposed on a state of finite deformation in
the presence of an electric field for independent incremental changes in the electric dis-
placement and the deformation within the material. The associated incremental changes
in the stress and the electric field within the material and the surrounding space and the
incremental boundary conditions are derived for mechanically unconstrained and con-
strained electroelastic solids and in the isotropic specialization. By way of illustration of
the incremental theory, we specialize the constitutive law to an electroelastic neo-Hookean
material, and consider the stability of a half-space subjected to pure homogeneous defor-
mation in the presence of an applied electric field normal to its surface. We show that sta-
bility is crucially dependent on the magnitudes of the electromechanical coupling
parameters in the constitutive equation.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of nonlinear electroelasticity accounts for the coupling of electrical and mechanical material properties of
electro-active solids subjected to finite strain. The theory, originally developed by Toupin [25] in 1956, has seen a revival
of interest recently because the electromechanical coupling of these materials opens the door for the development of many
new devices, impacting a range of applications that could not be addressed with previously available materials [1,21].

Electro-active elastomers, in particular, are materials that rapidly and reversibly change their mechanical properties in
response to the application of an electric field. Typically, the electromechanical coupling is achieved and optimized by mix-
ing, during the vulcanization process, nano- or micron-sized polarizable particles within a soft and highly elastic matrix
material. The change in mechanical and electrical properties is attributed to the interactions between neighbouring particles
within the matrix. Preferred matrix materials include gels, resin, natural rubber, silicone rubber and nitrile rubber, and the
particles of choice are spherical or irregularly shaped carbonyl iron particles [3,9]. Under the effect of an externally applied
electric field these mechanically soft materials are capable of large elastic deformations that are much larger than those aris-
ing in conventional electrostriction.

This nonlinear electromechanical coupling in electro-active elastomers has generated much interest since the original
publication by Toupin [25]. Relevant background information is provided in the articles by Truesdell and Toupin [26] and
Tiersten [24] and in the book by Landau and Lifschitz [16]. Materials are now available that can operate in a highly nonlinear
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electromechanical regime and they offer exciting possibilities from the perspective of constitutive modelling and electrome-
chanical theory. This interest is evidenced by a range of books dealing with the nonlinear interaction between mechanical
and electromagnetic fields (Maugin [17], Eringen and Maugin [12], Kovetz [15] and Hutter et al. [14], for example). Recent
journal articles include those by Ericksen [10,11], McMeeking and Landis [18], McMeeking et al. [19], Suo et al. [23], Steig-
mann [22], Fosdick and Tang [13] and by the authors of this paper [4,7,8].

In Section 2, following Dorfmann and Ogden [7,8], we provide a brief overview of the basic electrical and mechanical bal-
ance laws for time-independent electric fields. We then give the general constitutive law for an isotropic electroelastic mate-
rial based on a total energy function that enables expressions for the stress and electric field variables to be cast in
particularly simple forms. Two alternative formulations are highlighted in [7]. In one formulation the deformation gradient
and the applied electric field vector are taken as the independent variables, while in the other the electric field is replaced by
the electric displacement vector. In the present work we focus on the latter formulation with the energy density treated as a
function of the deformation gradient and the electric displacement vector, leading to explicit expressions for the total stress
tensor and the electric field vector in both Eulerian and Lagrangian forms. Appropriate boundary conditions are specified for
the electric field variables and for the total stress tensor.

In Section 3 we consider incremental changes in the deformation within the material and in the electric displacement
vector both within the material and its environment. The governing equations for the associated incremental changes in
the total stress and the electric field within the material and the surrounding space and the incremental boundary conditions
are derived for unconstrained and incompressible electroelastic materials. The incremental equations require second-, third-
and fourth-order electroelastic moduli tensors, which are derived for an isotropic material and listed in compact form. A par-
allel analysis for magnetoelastic materials is contained in the recent paper by Otténio et al. [20].

The basic electroelastic theory of Section 2 and the incremental equations of Section 3 are then used to evaluate the sur-
face stability of an electroelastic half-space. In Section 4 the components of the total stress and the electric field in a half-
space subjected to pure homogeneous deformations in the presence of an applied electric field normal to its free surface
are given, and appropriate boundary conditions are used to obtain the (Maxwell) stress and electric field components outside
the material. In Section 5, the general incremental equations are applied to the analysis of surface stability. In total there are
7 homogeneous linear equations for 7 unknowns and a bifurcation criterion is obtained by setting the 7� 7 determinant of
coefficients equal to zero. Numerical solutions are then obtained for a simple prototype model, namely a neo-Hookean elec-
troelastic material. In addition to the standard shear modulus, the energy function includes two electromechanical coupling
parameters. The stability of the electroelastic half-space depends critically on their magnitudes and on the magnitude of the
applied electric field. It is shown that for selected values of the parameters, an increasing electric field has a stabilizing effect,
but for different values it has a destabilizing influence. The half-space may become unstable when subjected to either ten-
sion or compression parallel to its surface.

2. The equations of nonlinear electroelasticity

In this section we summarize the form of the equations for nonlinear electroelastic deformations given by Dorfmann and
Ogden [7,8] as a basis for the derivation of the incremental equations in Section 3.

We consider an electroelastic body in a stress-free undeformed reference configuration B0, with boundary oB0. In B0

material points are labelled by their position vectors X. The material is deformed quasi-statically from B0 to the deformed
configuration B (with boundary oB) as a result of applied mechanical loads and an applied electric field. The deformation
is described by the vector function v, and x ¼ vðXÞ denotes the position of X in B. It is assumed that v is sufficiently well
behaved for our purposes. The deformation gradient tensor F is defined by F ¼ Gradv, Grad being the gradient operator
in B0, and has Cartesian components Fia ¼ oxi=oXa. Roman indices are associated with B and Greek indices with B0. We
adopt the standard notation J ¼ det F, with the convention J > 0. The left and right Cauchy-Green tensors associated with
F are denoted here by b ¼ FFT and c ¼ FTF, respectively, where T denotes the transpose of a second-order tensor.

2.1. Mechanical equilibrium

For a compressible material J is a local measure of the change in mass density, from q0 in B0 to q in B, via the equation

Jq ¼ q0: ð1Þ

For an incompressible material, q ¼ q0 and the incompressibility constraint J ¼ 1 is enforced.
In the absence of mechanical body forces, equilibrium is maintained through the equation

div s ¼ 0; ð2Þ

coupled with appropriate boundary conditions (to be discussed in Section 2.3), where s is the total Cauchy stress tensor, which
is symmetric, and div is the divergence operator in B. The total nominal stress tensor T is then defined by

T ¼ JF�1
s; ð3Þ
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