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a b s t r a c t 

We study the problem of convective movement of a reacting solute in a viscous incompressible fluid 

occupying a plane layer and subjected to a couple stresses effects. The thresholds for linear instability 

are found and compared to those derived by a global nonlinear energy stability analysis. In particular, 

we analyse the effect of no-slip boundary conditions on the stability and instability of convection. The 

conditions of no-slip at the boundary with couple stresses effect and non constant coefficients which are 

analysed for the first time in this article. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In atmospheric physics and oceanographic studies, the convec- 

tive instability that a top-heavy layer of fluid containing a solute 

creates has many applications. Furthermore, in pollution, such a 

solute can cover a city and remain for extended periods of time. 

Franchi and Straughan [1] introduced a highly nonlinear model for 

such behaviour, and developed a detailed analysis of its instability. 

Independently, Hayat and Nawaz [2] studied a reacting solute 

with a superimposed magnetic field acting for stagnation point 

flow in a rotating frame for fluids. Recently, a great deal of in- 

terest has focussed on convection in chemically reacting fluids 

(see Malashetty and Biradar [3] , Rahman and Al-Lawatia [4] . In 

addition, attention has been given to electro-magnetic field effects 

on such processes (see Kaloni and Mahajan [5] and Maehlmann 

and Papageorgiou [6] ). 

Earlier in this work the theoretical and experimental results 

on the onset of thermal instability (Bénard convection) in a fluid 

layer under varying assumptions of hydrodynamics, underwent a 

detailed reviewed, conducted by Chandrasekhar [7] . Such investi- 

gations of these kinds of fluids are important, bearing in mind the 

increasing importance of non-Newtonian fluids in technology and 

industries. Stokes [8] has put forward the theory of couple-stress 

fluids. These couple-stresses are present in significant magnitude 

in fluids with very large molecules. Applications of couple-stress 

fluid occur in connection with the study of the mechanism of 
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synovial joint lubrication, currently being focussed upon by re- 

searchers. A human joint is a dynamically loaded bearing with 

an articular cartilage as the bearing, and synovial fluid as the 

lubricant. The normal synovial fluid is clear or yellowish and is a 

non-Newtonian, viscous fluid. Because of the long chain of lauronic 

acid molecules found as additives in synovial fluid, Walicki and 

Walicka [9] modelled the fluid in question as couple-stress fluid 

in human joints. The issue of a couple-stress fluid and porous 

medium has been investigated in [10–12] . It should be stressed 

that these papers consider only the stress-free boundary condi- 

tions which assume that there is no mass flux across the boundary. 

Also, these papers deal with constant coefficients in the system 

of equations which makes the analysis very poor. The conditions 

of no-slip at the boundary and nonconstant coefficients in the 

system, which are believed to be highly relevant in real situations, 

are (we believe) analysed for the first time in this article. 

So, the investigation of the theories of linear instability and 

nonlinear stability linked to the question of convective movement 

of a reacting solute in a viscous incompressible fluid occupying a 

plane layer and subjected to stress effects is this works objective. 

Analysis of both the linear instability and nonlinear stability 

thresholds of the governing model is a method of assessing the 

beginning and type of convection and plays a critical role in 

comprehending this system. Assessing how suitable linear theory 

is for predicting the physics of the onset of convection can be 

achieved by comparison of the thresholds. The highly adaptable 

energy method [13] is employed so as to establish stability results. 

Nonlinear energy methods are particularly noted for delimiting 

the parameters of possible subcritical instability (that area be- 

tween the linear instability and nonlinear stability thresholds). 
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Nomenclature 

(x 1 , x 2 , x 3 ) = (x, y, z) Cartesian coordinates 

v velocity 

p pressure 

c concentration 

u dimensionless velocity 

P dimensionless pressure 

φ dimensionless concentration 

g gravitational acceleration 

μ dynamic viscosity 

ˆ ν couple stress viscosity 

� Laplacian 

D solute diffusion coefficient 

K 1 chemical reaction rate 

P s Prandtl number 
˜ h plane-tiling planform 

( ̄v i , p̄ , ̄c ) steady state solution 

ρ density 

ρ0 reference density 

c ∞ 

reference concentration 

αc salt expansion coefficient 

Ra = R 2 Rayleigh number 

Ra L critical Rayleigh number for linear 

instability theory 

Ra E critical Rayleigh number for the non- 

linear stability theory 

a horizontal wavenumber 

a x wavenumbers in the x direction 

a y wavenumbers in the y direction 

a L critical wavenumber for linear insta- 

bility theory 

a E critical wavenumber for the nonlinear 

stability theory 

σ growth rate −→ ω = (ξ1 , ξ2 , ξ3 ) vorticity vector −→ 

ψ = (ψ 1 , ψ 2 , ψ 3 ) potential vector 

Lx box dimension in the x direction 

Ly box dimension in the y direction 

Quantifying the difference between these two thresholds enables 

assessment of the suitability of linear theory to predict the de- 

stabilisation of the double diffusive convection [14–21] . are among 

the most recent works on the study of convective instabilities 

in fluid and porous media, while [22–25] have developed and 

analysed applications for certain convection models. 

This paper is organised thus. In the next section, the govern- 

ing equations of motion and derive the associated perturbation 

equations will be shown, followed by analyses of linear instability 

( Section 3 ) and global nonlinear stability ( Section 4 ) to establish 

the instability/stability thresholds. The stability analyses involve 

eigenvalue problems with non-constant coefficients, so a nu- 

merical solution to these questions is called for. The appropriate 

numerical method is explained in Section 5 . Section 6 , deals with 

the numerical results for the linear theory and compares them 

directly with those of the global nonlinear theories. 

2. Basic equations 

We suppose the fluid is contained in the plane layer 

{ z ∈ (0 , d) } × R 

2 , and is incompressible, although a Boussinesq ap- 

proximation is employed in the buoyancy term in the momentum 

equation. The momentum equation for a fluid containing a solute 

is then, 

ρ(v i, t + v j v i, j ) = −p , i + μ�v i − ˆ μ�2 v i − ραc k i g(c − c ∞ 

) , (2.1) 

where ρ , v , p, c are the constant density, velocity field, pres- 

sure, and concentration of solute. Additionally, αc is the salt 

expansion coefficient, μ is the dynamic viscosity, ˆ ν is the couple 

stress viscosity, g is gravity, c ∞ 

is a reference concentration, and 

k = (0 , 0 , 1) . Throughout, we use standard indicial notation and 

the Einstein summation convention so that e.g. v i, t = ∂ v i /∂ t, and 

p ,i = ∂ p/∂ x i , v j v i, j ≡ ( v . ∇) v , and � is the Laplacian. The balance 

of mass equation is 

v i,i = 0 (2.2) 

The equation governing the evaluation of the solute concentration 

is, cf., Hayat and Nawaz [2] , 

c ,t + v i c , i = D �c − K 1 (c − c ∞ 

) . (2.3) 

Here D is the solute diffusion coefficient, and K 1 is the chemical 

reaction rate, the chemical reaction being represented by the term 

K 1 (c − c ∞ 

) . 

The equations for our model can be reduced as: 

v i,t + v j v i, j = − 1 

ρ
p , i + ν�v i − ˆ ν�2 v i − k i gαc (c − c ∞ 

) , 

v i,i = 0 , 

c ,t + v i c , i = D �c − K 1 c. (2.4) 

where ν = μ/ρ and ˆ ν = ˆ μ/ρ . 

The boundary conditions to be satisfied are no-slip at the 

boundaries z = 0 and z = d with the concentrations fixed there. 

Thus, 

v i = 0 , on z = 0 , d;
c = c U , z = d; c = c L , z = 0 ; (2.5) 

where c U , c L are constants with c U > c L . 

We then find there is a steady solution ( ̄v i , ̄c , p̄ ) whose stability 

we wish to examine, and this is 

v̄ i ≡ 0 , 

c̄ = [ 
c U − c L cosh (A 1 d) 

sinh (A 1 d) 
] sinh (A 1 z) + c L cosh (A 1 z) , (2.6) 

where p̄ may then be found from (2.4) , and where A 1 is given by 

A 

2 
1 = 

K 1 

D 

. (2.7) 

Next, we drive perturbation equations to this steady state. 

Hence, put v i = v̄ i + u i , c = c̄ + φ, p = p̄ + P, and employ the 

scales 

τ = 

d 2 

ν
, U = 

ν

d 
, P = 

ρ νU 

d 
, L = d, 

where τ , U, L, P are time, velocity, length, and pressure scales. De- 

fine ξ = A 1 d = ( 
√ 

K 1 /D ) d, and pick the concentration scale C  as 

C  = U 

√ 

ν �C 

Dαc gd 

where �C = c U − c L > 0 . Furthermore, define the salt Rayleigh 

number R 2 as 

R 

2 = 

αc g d 
3 �C 

D ν
, (2.8) 

and the salt Prandtl number as P s = ν/D . We also need the 

non-dimensional numbers η and M where 

η = 

c L 
c U − c L 

, (2.9) 
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